Skip to main content

Can Shockwave Therapy Improve Tendon Metabolism?

  • Chapter
  • First Online:
Metabolic Influences on Risk for Tendon Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 920))

Abstract

Shockwave treatments are commonly used in the management of tendon injuries and there is increasing evidence for its clinical effectiveness. There is a paucity of fundamental (in vivo) studies investigating the biological action of shockwave therapy. Destruction of calcifications, pain relief and mechanotransduction-initiated tissue regeneration and remodeling of the tendon are considered to be the most important working mechanisms. The heterogeneity of systems (focussed shockwave therapy vs. radial pressurewave therapy), treatment protocols and study populations, and the fact that there seem to be responders and non-responders, continue to make it difficult to give firm recommendations with regard to the most optimal shockwave therapy approach. Specific knowledge with regard to the effects of shockwave therapy in patients with metabolic tendon disorders is not available. Further fundamental and clinical research is required to determine the value of shockwave therapy in the management of tendinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CGRP:

calcitonin gene-related peptide

EFD:

energy flux density

EH:

electrohydraulic

EM:

electromagnetic

F-SWT:

focused shockwave therapy

IL:

interleukin

MMP:

matrix metalloproteases

PE:

piezoelectric

R-PWT:

radial pressure wave therapy

SWT:

shockwave therapy

TGF-β1:

transforming growth factor β1

References

  1. Huisstede BM, Gebremariam L, van der Sande R, Hay EM, Koes BW (2011) Evidence for effectiveness of Extracorporal Shock-Wave Therapy (ESWT) to treat calcific and non-calcific rotator cuff tendinosis – a systematic review. Man Ther 16(5):419–433

    Article  PubMed  Google Scholar 

  2. Ioppolo F, Tattoli M, Di Sante L, Venditto T, Tognolo L, Delicata M et al (2013) Clinical improvement and resorption of calcifications in calcific tendinitis of the shoulder after shock wave therapy at 6 months’ follow-up: a systematic review and meta-analysis. Arch Phys Med Rehabil 94(9):1699–1706

    Article  PubMed  Google Scholar 

  3. Speed C (2014) A systematic review of shockwave therapies in soft tissue conditions: focusing on the evidence. Br J Sports Med 48(21):1538–1542

    Article  PubMed  Google Scholar 

  4. Mani-Babu S, Morrissey D, Waugh C, Screen H, Barton C (2015) The effectiveness of extracorporeal shock wave therapy in lower limb tendinopathy: a systematic review. Am J Sports Med 43(3):752–761

    Article  PubMed  Google Scholar 

  5. Yin MC, Ye J, Yao M, Cui XJ, Xia Y, Shen QX et al (2014) Is extracorporeal shock wave therapy clinical efficacy for relief of chronic, recalcitrant plantar fasciitis? A systematic review and meta-analysis of randomized placebo or active-treatment controlled trials. Arch Phys Med Rehabil 95(8):1585–1593

    Article  PubMed  Google Scholar 

  6. van der Worp H, van den Akker-Scheek I, van Schie H, Zwerver J (2013) ESWT for tendinopathy: technology and clinical implications. Knee Surg Sports Traumatol Arthrosc 21(6):1451–1458

    Article  PubMed  Google Scholar 

  7. Waugh CMCM (2015) In vivo biological response to extracorporeal shockwave therapy in human tendinopathy. Eur Cell Mater 29:268–280

    CAS  PubMed  Google Scholar 

  8. Gerdesmeyer L, Maier M, Haake M, Schmitz C (2002) Physical-technical principles of extracorporeal shockwave therapy (ESWT). Orthopade 31(7):610–617

    Article  CAS  PubMed  Google Scholar 

  9. Cleveland RO, Chitnis PV, McClure SR (2008) Shock wave therapy: what really matters reply. Ultrasound Med Biol 34(11):1869–1870

    Article  Google Scholar 

  10. Cleveland RO, Chitnis PV, McClure SR (2007) Acoustic field of a ballistic shock wave therapy device. Ultrasound Med Biol 33(8):1327–1335

    Article  PubMed  Google Scholar 

  11. Lohrer H, Nauck T, Dorn-Lange NV, Scholl J, Vester JC (2010) Comparison of radial versus focused extracorporeal shock waves in plantar fasciitis using functional measures. Foot Ankle Int 31(1):1–9

    Article  PubMed  Google Scholar 

  12. van der Worp H, Zwerver J, Hamstra M, van den Akker-Scheek I, Diercks RL (2014) No difference in effectiveness between focused and radial shockwave therapy for treating patellar tendinopathy: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 22(9):2026–2032

    Article  PubMed  Google Scholar 

  13. Mariotto S, Cavalieri E, Amelio E, Ciampa AR, de Prati AC, Marlinghaus E et al (2005) Extracorporeal shock waves: from lithotripsy to anti-inflammatory action by NO production. Nitric Oxide 12(2):89–96

    Article  CAS  PubMed  Google Scholar 

  14. Rompe JD, Krischek O, Eysel P, Hopf C, Jage J (1998) Results of extracorporeal shock-wave application in lateral elbow tendopathy. Schmerz 12(2):105–111

    Article  CAS  PubMed  Google Scholar 

  15. Wess OJ (2008) A neural model for chronic pain and pain relief by extracorporeal shock wave treatment. Urol Res 36(6):327–334

    Article  PubMed  Google Scholar 

  16. Rio E, Moseley L, Purdam C, Samiric T, Kidgell D, Pearce AJ et al (2014) The pain of tendinopathy: physiological or pathophysiological? Sports Med 44(1):9–23

    Article  PubMed  Google Scholar 

  17. Maier M, Averbeck B, Milz S, Refior H, Schmitz C (2003) Substance P and prostaglandin E-2 release after shock wave application to the rabbit femur. Clin Orthop 1(406):237–245

    Google Scholar 

  18. Hausdorf J, Lemmens MA, Kaplan S, Marangoz C, Milz S, Odaci E et al (2008) Extracorporeal shockwave application to the distal femur of rabbits diminishes the number of neurons immunoreactive for substance P in dorsal root ganglia L5. Brain Res 1207(1):96–101

    Google Scholar 

  19. Takahashi N, Wada Y, Ohtori S, Saisu T, Moriya H (2003) Application of shock waves to rat skin decreases calcitonin gene-related peptide immunoreactivity in dorsal root ganglion neurons. Auton Neurosci Basic Clin 107(2):81–84

    Article  CAS  Google Scholar 

  20. Hausdorf J, Lemmens MA, Heck KD, Grolms N, Korr H, Kertschanska S et al (2008) Selective loss of unmyelinated nerve fibers after extracorporeal shockwave application to the musculoskeletal system. Neuroscience 155(1):138–144

    Article  CAS  PubMed  Google Scholar 

  21. Schmitz C, DePace R (2009) Pain relief by extracorporeal shockwave therapy: an update on the current understanding. Urol Res 37(4):231–234

    Article  PubMed  PubMed Central  Google Scholar 

  22. Khan KM, Scott A (2009) Mechanotherapy: how physical therapists’ prescription of exercise promotes tissue repair. Br J Sports Med 43(4):247–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen Yeung-Jen YJ (2004–7) Extracorporeal shock waves promote healing of collagenase-induced Achilles tendinitis and increase TGF-beta1 and IGF-I expression. J Orthop Res 22(4):854–861

    Google Scholar 

  24. Wang Ching-Jen CJ (2003–11) Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res 21(6):984–989

    Google Scholar 

  25. Vetrano Mario M (2011–12) Extracorporeal shock wave therapy promotes cell proliferation and collagen synthesis of primary cultured human tenocytes. Knee Surg Sports Traumatol Arthrosc 19(12):2159–2168

    Google Scholar 

  26. Bosch GG (2009–4) The effect of focused extracorporeal shock wave therapy on collagen matrix and gene expression in normal tendons and ligaments. Equine Vet J 41(4):335–341

    Google Scholar 

  27. Bosch GG (2007–5) Effect of extracorporeal shock wave therapy on the biochemical composition and metabolic activity of tenocytes in normal tendinous structures in ponies. Equine Vet J 39(3):226–231

    Google Scholar 

  28. Han SH, Lee JW, Guyton GP, Parks BG, Courneya J, Schon LC (2009) Effect of extracorporeal shock wave therapy on cultured tenocytes. Foot Ankle Int 30(2):93–98

    PubMed  Google Scholar 

  29. Waugh CM, Morrissey D, Jones E, Riley GP, Langberg H, Screen HR (2015) In vivo biological response to extracorporeal shockwave therapy in human tendinopathy. Eur Cell Mater 29:268–280; discussion 280

    CAS  PubMed  Google Scholar 

  30. Mani-Babu S, Waugh CM, Screen HR, Maffulli N, Morrissey D (2013) The effects of extracorporeal shock wave therapy (ESWT) on type I collagen synthesis in the Achilles tendon: an intervention study on healthy participants. Int J Exp Pathol 94:A11–A12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Zwerver .

Editor information

Editors and Affiliations

Glossary

Energy flux density, (EFD, in mJ/mm2)

a term used to reflect the flow of shockwave energy in an area perpendicular to the direction of propagation. Shockwave dosage is broadly divided in high (EFD > 0.12 mJ/mm2) and low (EFD ≤ 0.12 mJ/mm2) energy delivery.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zwerver, J., Waugh, C., van der Worp, H., Scott, A. (2016). Can Shockwave Therapy Improve Tendon Metabolism?. In: Ackermann, P., Hart, D. (eds) Metabolic Influences on Risk for Tendon Disorders. Advances in Experimental Medicine and Biology, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-319-33943-6_26

Download citation

Publish with us

Policies and ethics