Skip to main content

Collagen Homeostasis and Metabolism

  • Chapter
  • First Online:
Metabolic Influences on Risk for Tendon Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 920))

Abstract

The musculoskeletal system and its collagen rich tissue is important for ensuring architecture of skeletal muscle, energy storage in tendon and ligaments, joint surface protection, and for ensuring the transfer of muscular forces into resulting limb movement. Structure of tendon is stable and the metabolic activity is low, but mechanical loading and subsequent mechanotransduction and molecular anabolic signaling can result in some adaptation of the tendon especially during youth and adolescence. Within short time, tendon will get stiffer with training and lack of mechanical tissue loading through inactivity or immobilization of the human body will conversely result in a dramatic loss in tendon stiffness and collagen synthesis. This illustrates the importance of regular mechanical load in order to preserve the stabilizing role of the connective tissue for the overall function of the musculoskeletal system in both daily activity and exercise. Adaptive responses may vary along the tendon, and differ between mid-substance and insertional areas of the tendon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finni T, Komi PV, Lepola V (2000) In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump. Eur J Appl Physiol 83(4–5):416–426

    Article  CAS  PubMed  Google Scholar 

  2. Giddings VL, Beaupre GS, Whalen RT, Carter DR (2000) Calcaneal loading during walking and running. Med Sci Sports Exerc 32(3):627–634

    Article  CAS  PubMed  Google Scholar 

  3. Magnusson SP, Aagaard P, Dyhre-Poulsen P, Kjaer M (2001) Load–displacement properties of the human triceps surae aponeurosis in vivo. J Physiol 531(Pt 1):277–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khan K, Cook J (2003) The painful nonruptured tendon: clinical aspects. Clin Sports Med 22(4):711–725

    Article  PubMed  Google Scholar 

  5. Maffulli N, Khan KM, Puddu G (1998) Overuse tendon conditions: time to change a confusing terminology. Arthroscopy 14(8):840–843

    Article  CAS  PubMed  Google Scholar 

  6. Ferretti A (1986) Epidemiology of jumper’s knee. Sports Med 3(4):289–295

    Article  CAS  PubMed  Google Scholar 

  7. Frost P, Bonde JP, Mikkelsen S, Andersen JH, Fallentin N, Kaergaard A et al (2002) Risk of shoulder tendinitis in relation to shoulder loads in monotonous repetitive work. Am J Ind Med 41(1):11–18

    Article  PubMed  Google Scholar 

  8. Tanaka S, Petersen M, Cameron L (2001) Prevalence and risk factors of tendinitis and related disorders of the distal upper extremity among U.S. workers: comparison to carpal tunnel syndrome. Am J Ind Med 39(3):328–335

    Article  CAS  PubMed  Google Scholar 

  9. Gruchow HW, Pelletier D (1979) An epidemiologic study of tennis elbow. Incidence, recurrence, and effectiveness of prevention strategies. Am J Sports Med 7(4):234–238

    Article  CAS  PubMed  Google Scholar 

  10. Lian OB, Engebretsen L, Bahr R (2005) Prevalence of jumper's knee among elite athletes from different sports: a cross-sectional study. Am J Sports Med 33(4):561–567

    Article  PubMed  Google Scholar 

  11. Knobloch K, Yoon U, Vogt PM (2008) Acute and overuse injuries correlated to hours of training in master running athletes. Foot Ankle Int 29(7):671–676

    Article  PubMed  Google Scholar 

  12. Kettunen JA, Kvist M, Alanen E, Kujala UM (2002) Long-term prognosis for jumper's knee in male athletes. A prospective follow-up study. Am J Sports Med 30(5):689–692

    PubMed  Google Scholar 

  13. Bojsen-Moller J, Kalliokoski KK, Seppanen M, Kjaer M, Magnusson SP (2006) Low-intensity tensile loading increases intratendinous glucose uptake in the Achilles tendon. J Appl Physiol 101(1):196–201

    Article  CAS  PubMed  Google Scholar 

  14. Langberg H, Rosendal L, Kjaer M (2001) Training-induced changes in peritendinous type I collagen turnover determined by microdialysis in humans. J Physiol 534(Pt 1):297–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kastelic J, Galeski A, Baer E (1978) The multicomposite structure of tendon. Connect Tissue Res 6(1):11–23

    Article  CAS  PubMed  Google Scholar 

  16. Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316(Pt 1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bailey AJ (2001) Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev 122(7):735–755

    Article  CAS  PubMed  Google Scholar 

  18. Riley GP (2005) Gene expression and matrix turnover in overused and damaged tendons. Scand J Med Sci Sports 15(4):241–251

    Article  CAS  PubMed  Google Scholar 

  19. Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84(2):649–698

    Article  CAS  PubMed  Google Scholar 

  20. Langberg H, Skovgaard D, Karamouzis M, Bulow J, Kjaer M (1999) Metabolism and inflammatory mediators in the peritendinous space measured by microdialysis during intermittent isometric exercise in humans. J Physiol 515(Pt 3):919–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boushel R, Langberg H, Green S, Skovgaard D, Bulow J, Kjaer M (2000) Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans. J Physiol 524(Pt 1):305–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boushel R, Langberg H, Olesen J, Nowak M, Simonsen L, Bulow J et al (2000) Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green. J Appl Physiol 89(5):1868–1878

    CAS  PubMed  Google Scholar 

  23. Chiquet M, Gelman L, Lutz R, Maier S (2009) From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta 1793(5):911–920

    Article  CAS  PubMed  Google Scholar 

  24. Bayer ML, Schjerling P, Herchenhan A, Zeltz C, Heinemeier KM, Christensen L et al (2014) Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype. PLoS One 9(1), e86078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yang G, Crawford RC, Wang JH (2004) Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech 37(10):1543–1550

    Article  PubMed  Google Scholar 

  26. Schild C, Trueb B (2002) Mechanical stress is required for high-level expression of connective tissue growth factor. Exp Cell Res 274(1):83–91

    Article  CAS  PubMed  Google Scholar 

  27. Abrahamsson SO, Lohmander S (1996) Differential effects of insulin-like growth factor-I on matrix and DNA synthesis in various regions and types of rabbit tendons. J Orthop Res 14(3):370–376

    Article  CAS  PubMed  Google Scholar 

  28. Hansson HA, Engstrom AM, Holm S, Rosenqvist AL (1988) Somatomedin C immunoreactivity in the Achilles tendon varies in a dynamic manner with the mechanical load. Acta Physiol Scand 134(2):199–208

    Article  CAS  PubMed  Google Scholar 

  29. Heinemeier KM, Olesen JL, Haddad F, Langberg H, Kjaer M, Baldwin KM et al (2007) Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types. J Physiol 582(Pt 3):1303–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heinemeier KM, Olesen JL, Schjerling P, Haddad F, Langberg H, Baldwin KM et al (2007) Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol 102(2):573–581

    Article  CAS  PubMed  Google Scholar 

  31. Olesen JL, Heinemeier KM, Haddad F, Langberg H, Flyvbjerg A, Kjaer M et al (2006) Expression of insulin-like growth factor I, insulin-like growth factor binding proteins, and collagen mRNA in mechanically loaded plantaris tendon. J Appl Physiol 101(1):183–188

    Article  CAS  PubMed  Google Scholar 

  32. Gumucio JP, Sugg KB, Mendias CL (2015) TGF-beta superfamily signaling in muscle and tendon adaptation to resistance exercise. Exerc Sport Sci Rev 43:93–99

    Article  PubMed  PubMed Central  Google Scholar 

  33. Boesen AP, Dideriksen K, Couppe C, Magnusson SP, Schjerling P, Boesen M et al (2013) Tendon and skeletal muscle matrix gene expression and functional responses to immobilisation and rehabilitation in young males: effect of growth hormone administration. J Physiol 591(Pt 23):6039–6052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Langberg H, Skovgaard D, Petersen LJ, Bulow J, Kjaer M (1999) Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans. J Physiol 521(Pt 1):299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller BF, Olesen JL, Hansen M, Dossing S, Crameri RM, Welling RJ et al (2005) Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol 567(Pt 3):1021–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dideriksen K, Sindby AK, Krogsgaard M, Schjerling P, Holm L, Langberg H (2013) Effect of acute exercise on patella tendon protein synthesis and gene expression. Springer Plus 2(1):109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hansen M, Kongsgaard M, Holm L, Skovgaard D, Magnusson SP, Qvortrup K et al (2009) Effect of estrogen on tendon collagen synthesis, tendon structural characteristics, and biomechanical properties in postmenopausal women. J Appl Physiol 106(4):1385–1393

    Article  CAS  PubMed  Google Scholar 

  38. Hansen M, Miller BF, Holm L, Doessing S, Petersen SG, Skovgaard D et al (2009) Effect of administration of oral contraceptives in vivo on collagen synthesis in tendon and muscle connective tissue in young women. J Appl Physiol 106(4):1435–1443

    Article  CAS  PubMed  Google Scholar 

  39. Petersen SG, Miller BF, Hansen M, Trappe TA, Kjaer M, Holm L (2010) Exercise & NSAID: effect on muscle protein synthesis in knee osteoarthritis patients? Med Sci Sports Exerc 43:425–431

    Article  CAS  Google Scholar 

  40. Heinemeier KM, Bjerrum SS, Schjerling P, Kjaer M (2013) Expression of extracellular matrix components and related growth factors in human tendon and muscle after acute exercise. Scand J Med Sci Sports 23(3):e150–e161

    Article  CAS  PubMed  Google Scholar 

  41. Sullivan BE, Carroll CC, Jemiolo B, Trappe SW, Magnusson SP, Dossing S et al (2009) Effect of acute resistance exercise and sex on human patellar tendon structural and regulatory mRNA expression. J Appl Physiol 106(2):468–475

    Article  CAS  PubMed  Google Scholar 

  42. Heinemeier KM, Schjerling P, Heinemeier J, Magnusson SP, Kjaer M (2013) Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C. FASEB J 27(5):2074–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bank RA, TeKoppele JM, Oostingh G, Hazleman BL, Riley GP (1999) Lysylhydroxylation and non-reducible crosslinking of human supraspinatus tendon collagen: changes with age and in chronic rotator cuff tendinitis. Ann Rheum Dis 58(1):35–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thorpe CT, Streeter I, Pinchbeck GL, Goodship AE, Clegg PD, Birch HL (2010) Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging. J Biol Chem 285(21):15674–15681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McAnulty RJ, Laurent GJ (1987) Collagen synthesis and degradation in vivo. Evidence for rapid rates of collagen turnover with extensive degradation of newly synthesized collagen in tissues of the adult rat. Coll Relat Res 7(2):93–104

    Article  CAS  PubMed  Google Scholar 

  46. Kongsgaard M, Reitelseder S, Pedersen TG, Holm L, Aagaard P, Kjaer M et al (2007) Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol (Oxf) 191(2):111–121

    Article  CAS  Google Scholar 

  47. Gumucio JP, Phan AC, Ruehlmann DG, Noah AC, Mendias CL (2014) Synergist ablation induces rapid tendon growth through the synthesis of a neotendon matrix. J Appl Physiol 2014:jap 00720

    Google Scholar 

  48. Tan Q, Lui PP, Lee YW (2013) In vivo identity of tendon stem cells and the roles of stem cells in tendon healing. Stem Cells Dev

    Google Scholar 

  49. Mendias CL, Gumucio JP, Bakhurin KI, Lynch EB, Brooks SV (2012) Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts. J Orthop Res 30(4):606–612

    Article  CAS  PubMed  Google Scholar 

  50. Hansen P, Aagaard P, Kjaer M, Larsson B, Magnusson SP (2003) Effect of habitual running on human Achilles tendon load-deformation properties and cross-sectional area. J Appl Physiol 95(6):2375–2380

    Article  CAS  PubMed  Google Scholar 

  51. Arndt A, Bruggemann GP, Koebke J, Segesser B (1999) Asymmetrical loading of the human triceps surae: I. Mediolateral force differences in the Achilles tendon. Foot Ankle Int 20(7):444–449

    Article  CAS  PubMed  Google Scholar 

  52. Bojsen-Moller J, Hansen P, Aagaard P, Svantesson U, Kjaer M, Magnusson SP (2004) Differential displacement of the human soleus and medial gastrocnemius aponeuroses during isometric plantar flexor contractions in vivo. J Appl Physiol 97(5):1908–1914

    Article  PubMed  Google Scholar 

  53. Arndt A, Bengtsson AS, Peolsson M, Thorstensson A, Movin T (2012) Non-uniform displacement within the Achilles tendon during passive ankle joint motion. Knee Surg Sports Traumatol Arthrosc 20(9):1868–1874

    Article  PubMed  Google Scholar 

  54. Kim YS, Kim JM, Bigliani LU, Kim HJ, Jung HW (2011) In vivo strain analysis of the intact supraspinatus tendon by ultrasound speckles tracking imaging. J Orthop Res 29(12):1931–1937

    Article  PubMed  Google Scholar 

  55. Stegman KJ, Djurickovic S, Dechev N (2014) In Vivo estimation of flexor digitorum superficialis tendon displacement with speckle tracking on 2-d ultrasound images using laplacian, gaussian and rayleigh techniques. Ultrasound Med Biol 40(3):568–582

    Article  PubMed  Google Scholar 

  56. Haraldsson BT, Aagaard P, Krogsgaard M, Alkjaer T, Kjaer M, Magnusson SP (2005) Region-specific mechanical properties of the human patella tendon. J Appl Physiol 98(3):1006–1012

    Article  CAS  PubMed  Google Scholar 

  57. Hansen P, Haraldsson BT, Aagaard P, Kovanen V, Avery NC, Qvortrup K et al (2010) Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology. J Appl Physiol 108(1):47–52

    Article  PubMed  Google Scholar 

  58. Haraldsson BT, Aagaard P, Qvortrup K, Bojsen-Moller J, Krogsgaard M, Koskinen S et al (2008) Lateral force transmission between human tendon fascicles. Matrix Biol 27(2):86–95

    Article  CAS  PubMed  Google Scholar 

  59. Screen HR, Lee DA, Bader DL, Shelton JC (2004) An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc Inst Mech Eng H 218(2):109–119

    Article  CAS  PubMed  Google Scholar 

  60. Arnoczky SP, Lavagnino M, Whallon JH, Hoonjan A (2002) In situ cell nucleus deformation in tendons under tensile load; a morphological analysis using confocal laser microscopy. J Orthop Res 20(1):29–35

    Article  PubMed  Google Scholar 

  61. Arnoczky SP, Lavagnino M, Egerbacher M (2007) The mechanobiological aetiopathogenesis of tendinopathy: is it the over-stimulation or the under-stimulation of tendon cells? Int J Exp Pathol 88(4):217–226

    Article  PubMed  PubMed Central  Google Scholar 

  62. Scott JE (1991) Proteoglycan: collagen interactions in connective tissues. Ultrastructural, biochemical, functional and evolutionary aspects. Int J Biol Macromol 13(3):157–161

    Article  CAS  PubMed  Google Scholar 

  63. Scott JE (2003) Elasticity in extracellular matrix 'shape modules' of tendon, cartilage, etc. A sliding proteoglycan-filament model. J Physiol 553(Pt 2):335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Svensson RB, Hassenkam T, Hansen P, Kjaer M, Magnusson SP (2011) Tensile force transmission in human patellar tendon fascicles is not mediated by glycosaminoglycans. Connect Tissue Res 52:415–421

    Article  CAS  PubMed  Google Scholar 

  65. Lujan TJ, Underwood CJ, Jacobs NT, Weiss JA (2009) Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament. J Appl Physiol 106(2):423–431

    Article  PubMed  Google Scholar 

  66. Provenzano PP, Vanderby R Jr (2006) Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol 25(2):71–84

    Article  CAS  PubMed  Google Scholar 

  67. Buehler MJ (2008) Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J Mech Behav Biomed Mater 1(1):59–67

    Article  PubMed  Google Scholar 

  68. Barnard K, Light ND, Sims TJ, Bailey AJ (1987) Chemistry of the collagen cross-links. Origin and partial characterization of a putative mature cross-link of collagen. Biochem J 244(2):303–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fratzl P, Misof K, Zizak I, Rapp G, Amenitsch H, Bernstorff S (1998) Fibrillar structure and mechanical properties of collagen. J Struct Biol 122(1–2):119–122

    Article  CAS  PubMed  Google Scholar 

  70. Mosler E, Folkhard W, Knorzer E, Nemetschek-Gansler H, Nemetschek T, Koch MH (1985) Stress-induced molecular rearrangement in tendon collagen. J Mol Biol 182(4):589–596

    Article  CAS  PubMed  Google Scholar 

  71. Sasaki N, Odajima S (1996) Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J Biomech 29(9):1131–1136

    Article  CAS  PubMed  Google Scholar 

  72. Sasaki N, Odajima S (1996) Stress–strain curve and Young's modulus of a collagen molecule as determined by the X-ray diffraction technique. J Biomech 29(5):655–658

    Article  CAS  PubMed  Google Scholar 

  73. Lorenzo AC, Caffarena ER (2005) Elastic properties, Young's modulus determination and structural stability of the tropocollagen molecule: a computational study by steered molecular dynamics. J Biomech 38(7):1527–1533

    Article  PubMed  Google Scholar 

  74. Bailey AJ, Paul RG, Knott L (1998) Mechanisms of maturation and ageing of collagen. Mech Ageing Dev 106(1–2):1–56

    Article  CAS  PubMed  Google Scholar 

  75. Svensson RB, Mulder H, Kovanen V, Magnusson SP (2013) Fracture mechanics of collagen fibrils: influence of natural cross-links. Biophys J 104(11):2476–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ker RF, Alexander RM, Bennett MB (1988) Why are mammalian tendons so thick? J Zoo Lond 216:309–324

    Article  Google Scholar 

  77. Rosager S, Aagaard P, Dyhre-Poulsen P, Neergaard K, Kjaer M, Magnusson SP (2002) Load–displacement properties of the human triceps surae aponeurosis and tendon in runners and non-runners. Scand J Med Sci Sports 12(2):90–98

    Article  CAS  PubMed  Google Scholar 

  78. Arampatzis A, Karamanidis K, Albracht K (2007) Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude. J Exp Biol 210(Pt 15):2743–2753

    Article  PubMed  Google Scholar 

  79. Couppe C, Kongsgaard M, Aagaard P, Hansen P, Bojsen-Moller J, Kjaer M et al (2008) Habitual loading results in tendon hypertrophy and increased stiffness of the human patellar tendon. J Appl Physiol 105(3):805–810

    Article  CAS  PubMed  Google Scholar 

  80. Michna H (1984) Morphometric analysis of loading-induced changes in collagen-fibril populations in young tendons. Cell Tissue Res 236(2):465–470

    Article  CAS  PubMed  Google Scholar 

  81. Patterson-Kane JC, Parry DA, Birch HL, Goodship AE, Firth EC (1997) An age-related study of morphology and cross-link composition of collagen fibrils in the digital flexor tendons of young thoroughbred horses. Connect Tissue Res 36(3):253–260

    Article  CAS  PubMed  Google Scholar 

  82. Patterson-Kane JC, Firth EC, Parry DA, Wilson AM, Goodship AE (1998) Effects of training on collagen fibril populations in the suspensory ligament and deep digital flexor tendon of young thoroughbreds. Am J Vet Res 59(1):64–68

    CAS  PubMed  Google Scholar 

  83. Couppe C, Svensson RB, Grosset JF, Kovanen V, Nielsen RH, Olsen MR et al (2014) Life-long endurance running is associated with reduced glycation and mechanical stress in connective tissue. Age (Dordr) 36(4):9665

    Article  CAS  Google Scholar 

  84. Kongsgaard M, Qvortrup K, Larsen J, Aagaard P, Doessing S, Hansen P et al (2010) Fibril morphology and tendon mechanical properties in patellar tendinopathy: effects of heavy slow resistance training. Am J Sports Med 38(4):749–756

    Article  PubMed  Google Scholar 

  85. Bailey AJ, Paul RG, Knott L (1998) Mechanisms of maturation and ageing of collagen. Mech Ageing Dev 106(1–2):1–56

    Article  CAS  PubMed  Google Scholar 

  86. Kongsgaard M, Kovanen V, Aagaard P, Doessing S, Hansen P, Laursen AH et al (2009) Corticosteroid injections, eccentric decline squat training and heavy slow resistance training in patellar tendinopathy. Scand J Med Sci Sports 19(6):790–802

    Article  CAS  PubMed  Google Scholar 

  87. Verzijl N, DeGroot J, Oldehinkel E, Bank RA, Thorpe SR, Baynes JW et al (2000) Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem J 350(Pt 2):381–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Narici MV, Maganaris CN (2007) Plasticity of the muscle-tendon complex with disuse and aging. Exerc Sport Sci Rev 35(3):126–134

    Article  PubMed  Google Scholar 

  89. Suetta C, Hvid LG, Justesen L, Christensen U, Neergaard K, Simonsen L et al (2009) Effects of ageing on human skeletal muscle after immobilisation and re-training. J Appl Physiol

    Google Scholar 

  90. de Boer MD, Maganaris CN, Seynnes OR, Rennie MJ, Narici MV (2007) Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men. J Physiol Lond 583(Pt 3):1079–1091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Matsumoto F, Trudel G, Uhthoff HK, Backman DS (2003) Mechanical effects of immobilization on the Achilles' tendon. Arch Phys Med Rehabil 84(5):662–667

    PubMed  Google Scholar 

  92. Rumian AP, Draper ER, Wallace AL, Goodship AE (2009) The influence of the mechanical environment on remodelling of the patellar tendon. J Bone Joint Surg (Br) 91(4):557–564

    Article  CAS  Google Scholar 

  93. Eliasson P, Fahlgren A, Pasternak B, Aspenberg P (2007) Unloaded rat Achilles tendons continue to grow, but lose viscoelasticity. J Appl Physiol 103(2):459–463

    Article  PubMed  Google Scholar 

  94. Kinugasa R, Hodgson JA, Edgerton VR, Shin DD, Sinha S (2010) Reduction in tendon elasticity from unloading is unrelated to its hypertrophy. J Appl Physiol 109(3):870–877

    Article  PubMed  PubMed Central  Google Scholar 

  95. Shin D, Finni T, Ahn S, Hodgson JA, Lee HD, Edgerton VR et al (2008) Effect of chronic unloading and rehabilitation on human Achilles tendon properties: a velocity-encoded phase-contrast MRI study. J Appl Physiol 105(4):1179–1186

    Article  PubMed  PubMed Central  Google Scholar 

  96. Reeves ND, Maganaris CN, Ferretti G, Narici MV (2005) Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl Physiol 98(6):2278–2286

    Article  CAS  PubMed  Google Scholar 

  97. de Boer MD, Maganaris CN, Seynnes OR, Rennie MJ, Narici MV (2007) Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men. J Physiol 583(Pt 3):1079–1091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Boesen AP, Dideriksen K, Couppe C, Magnusson SP, Schjerling P, Boesen M et al (2014) Effect of growth hormone on aging connective tissue in muscle and tendon: gene expression, morphology, and function following immobilization and rehabilitation. J Appl Physiol 116(2):192–203

    Article  CAS  PubMed  Google Scholar 

  99. Majima T, Yasuda K, Tsuchida T, Tanaka K, Miyakawa K, Minami A et al (2003) Stress shielding of patellar tendon: effect on small-diameter collagen fibrils in a rabbit model. J Orthop Sci 8(6):836–841

    Article  PubMed  Google Scholar 

  100. Nakagawa Y, Hayashi K, Yamamoto N, Nagashima K (1996) Age-related changes in biomechanical properties of the Achilles tendon in rabbits. Eur J Appl Physiol Occup Physiol 73(1–2):7–10

    Article  CAS  PubMed  Google Scholar 

  101. Nakagawa Y, Totsuka M, Sato T, Fukuda Y, Hirota K (1989) Effect of disuse on the ultrastructure of the achilles tendon in rats. Eur J Appl Physiol Occup Physiol 59(3):239–242

    Article  CAS  PubMed  Google Scholar 

  102. Tsuchida T, Yasuda K, Kaneda K, Hayashi K, Yamamoto N, Miyakawa K et al (1997) Effects of in situ freezing and stress-shielding on the ultrastructure of rabbit patellar tendons. J Orthop Res 15(6):904–910

    Article  CAS  PubMed  Google Scholar 

  103. Majima T, Yasuda K, Fujii T, Yamamoto N, Hayashi K, Kaneda K (1996) Biomechanical effects of stress shielding of the rabbit patellar tendon depend on the degree of stress reduction. J Orthop Res 14(3):377–383

    Article  CAS  PubMed  Google Scholar 

  104. Nielsen HM, Skalicky M, Viidik A (1998) Influence of physical exercise on aging rats. III. Life-long exercise modifies the aging changes of the mechanical properties of limb muscle tendons. Mech Ageing Dev 100(3):243–260

    Article  CAS  PubMed  Google Scholar 

  105. Wood LK, Arruda EM, Brooks SV (2011) Regional stiffening with aging in tibialis anterior tendons of mice occurs independent of changes in collagen fibril morphology. J Appl Physiol 111(4):999–1006

    Article  PubMed  PubMed Central  Google Scholar 

  106. Viidik A, Nielsen HM, Skalicky M (1996) Influence of physical exercise on aging rats: II. Life-long exercise delays aging of tail tendon collagen. Mech Ageing Dev 88(3):139–148

    Article  CAS  PubMed  Google Scholar 

  107. Dressler MR, Butler DL, Wenstrup R, Awad HA, Smith F, Boivin GP (2002) A potential mechanism for age-related declines in patellar tendon biomechanics. J Orthop Res 20(6):1315–1322

    Article  CAS  PubMed  Google Scholar 

  108. Vogel HG (1978) Influence of maturation and age on mechanical and biochemical parameters of connective tissue of various organs in the rat. Connect Tissue Res 6(3):161–166

    Article  CAS  PubMed  Google Scholar 

  109. Dunkman AA, Buckley MR, Mienaltowski MJ, Adams SM, Thomas SJ, Satchell L et al (2013) Decorin expression is important for age-related changes in tendon structure and mechanical properties. Matrix Biol 32(1):3–13

    Article  CAS  PubMed  Google Scholar 

  110. LaCroix AS, Duenwald-Kuehl SE, Brickson S, Akins TL, Diffee G, Aiken J et al (2013) Effect of age and exercise on the viscoelastic properties of rat tail tendon. Ann Biomed Eng 41(6):1120–1128

    Article  PubMed  PubMed Central  Google Scholar 

  111. Simonsen EB, Klitgaard H, Bojsen-Moller F (1995) The influence of strength training, swim training and ageing on the Achilles tendon and m. soleus of the rat. J Sports Sci 13(4):291–295

    Article  CAS  PubMed  Google Scholar 

  112. Haut RC, Lancaster RL, DeCamp CE (1992) Mechanical properties of the canine patellar tendon: some correlations with age and the content of collagen. J Biomech 25(2):163–173

    Article  CAS  PubMed  Google Scholar 

  113. Haut RC (1983) Age-dependent influence of strain rate on the tensile failure of rat-tail tendon. J Biomech Eng 105(3):296–299

    Article  CAS  PubMed  Google Scholar 

  114. Connizzo BK, Sarver JJ, Birk DE, Soslowsky LJ, Iozzo RV (2013) Effect of age and proteoglycan deficiency on collagen fiber re-alignment and mechanical properties in mouse supraspinatus tendon. J Biomech Eng 135(2):021019

    Article  PubMed  Google Scholar 

  115. Flahiff CM, Brooks AT, Hollis JM, Vander Schilden JL, Nicholas RW (1995) Biomechanical analysis of patellar tendon allografts as a function of donor age. Am J Sports Med 23(3):354–358

    Article  CAS  PubMed  Google Scholar 

  116. Hubbard RP, Soutas-Little RW (1984) Mechanical properties of human tendon and their age dependence. J Biomech Eng 106(2):144–150

    Article  CAS  PubMed  Google Scholar 

  117. Johnson GA, Tramaglini DM, Levine RE, Ohno K, Choi NY, Woo SLY (1994) Tensile and viscoelastic properties of human patellar tendon. J Orthop Res 12(6):796–803

    Article  CAS  PubMed  Google Scholar 

  118. Seynnes OR, Bojsen-Moller J, Albracht K, Arndt A, Cronin NJ, Finni T et al (2015) Ultrasound-based testing of tendon mechanical properties: a critical evaluation. J Appl Physiol 118(2):133–141

    Article  CAS  PubMed  Google Scholar 

  119. Carroll CC, Dickinson JM, Haus JM, Lee GA, Hollon CJ, Aagaard P et al (2008) Influence of aging on the in vivo properties of human patellar tendon. J Appl Physiol 105(6):1907–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Couppe C, Hansen P, Kongsgaard M, Kovanen V, Suetta C, Aagaard P et al (2009) Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J Appl Physiol 107(3):880–886

    Article  CAS  PubMed  Google Scholar 

  121. Karamanidis K, Arampatzis A (2006) Mechanical and morphological properties of human quadriceps femoris and triceps surae muscle-tendon unit in relation to aging and running. J Biomech 39(3):406–417

    Article  PubMed  Google Scholar 

  122. Mian OS, Thom JM, Ardigo LP, Minetti AE, Narici MV (2007) Gastrocnemius muscle-tendon behaviour during walking in young and older adults. Acta Physiol (Oxford) 189(1):57–65

    Google Scholar 

  123. Morse CI, Thom JM, Birch KM, Narici MV (2005) Tendon elongation influences the amplitude of interpolated doublets in the assessment of activation in elderly men. J Appl Physiol 98(1):221–226

    Article  PubMed  Google Scholar 

  124. Onambele GL, Narici MV, Maganaris CN (2006) Calf muscle-tendon properties and postural balance in old age. J Appl Physiol 100(6):2048–2056

    Article  PubMed  Google Scholar 

  125. Stenroth L, Peltonen J, Cronin NJ, Sipila S, Finni T (2012) Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo. J Appl Physiol 113(10):1537–1544

    Article  PubMed  Google Scholar 

  126. Couppe C, Hansen P, Kongsgaard M, Kovanen V, Suetta C, Aagaard P et al (2009) Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J Appl Physiol 107(3):880–886

    Article  CAS  PubMed  Google Scholar 

  127. Riley G (2005) Chronic tendon pathology: molecular basis and therapeutic implications. Exp Rev Mol Med 7(5):1–25

    Article  Google Scholar 

  128. Tidball JG, Salem G, Zernicke R (1993) Site and mechanical conditions for failure of skeletal muscle in experimental strain injuries. J Appl Physiol 74(3):1280–1286

    CAS  PubMed  Google Scholar 

  129. Roffino S, Carnino A, Chopard A, Mutin M, Marini JF (2006) Structural remodeling of unweighted soleus myotendinous junction in monkey. Comptes Rendus Biologies 329(3):172–179

    Article  PubMed  Google Scholar 

  130. Ciena AP, Luques IU, Dias FJ, Yokomizo de Almeida SR, Iyomasa MM, Watanabe IS (2010) Ultrastructure of the myotendinous junction of the medial pterygoid muscle of adult and aged Wistar rats. Micron 41(8):1011–1014

    Article  PubMed  Google Scholar 

  131. Knudsen AB, Larsen M, Mackey AL, Hjort M, Hansen KK, Qvortrup K et al (2014) The human myotendinous junction: an ultrastructural and 3D analysis study. Scand J Med Sci Sports 25:e116–e123

    Article  PubMed  Google Scholar 

  132. Trotter JA (2002) Structure-function considerations of muscle-tendon junctions. Comp Biochem Physiol A Mol Integr Physiol 133(4):1127–1133

    Article  PubMed  Google Scholar 

  133. Kojima H, Sakuma E, Mabuchi Y, Mizutani J, Horiuchi O, Wada I et al (2008) Ultrastructural changes at the myotendinous junction induced by exercise. J Orthop Sci 13(3):233–239

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Peter Magnusson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Magnusson, S.P., Heinemeier, K.M., Kjaer, M. (2016). Collagen Homeostasis and Metabolism. In: Ackermann, P., Hart, D. (eds) Metabolic Influences on Risk for Tendon Disorders. Advances in Experimental Medicine and Biology, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-319-33943-6_2

Download citation

Publish with us

Policies and ethics