Skip to main content

The Ideal Energy of Classical Lattice Dynamics

  • Chapter
  • First Online:
Advances in Unconventional Computing

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 22))

Abstract

We define, as local quantities, the least energy and momentum allowed by quantum mechanics and special relativity for physical realizations of some classical lattice dynamics. These definitions depend on local rates of finite-state change. In two example dynamics, we see that these rates evolve like classical mechanical energy and momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unless the right and left edges of the space itself are joined with a vertical offset.

References

  1. Bekenstein, J.D.: Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D 23, 287 (1981)

    Article  MathSciNet  Google Scholar 

  2. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120, 188 (1998)

    Article  Google Scholar 

  3. Margolus, N.: The finite-state character of physical dynamics. arXiv:1109.4994

  4. Planck, M.: On the law of distribution of energy in the normal spectrum. Ann. Phys. (Berlin) 309, 553 (1901)

    Google Scholar 

  5. Margolus, N.: Quantum emulation of classical dynamics. arXiv:1109.4995

  6. Margolus, N.: Physics like models of computation. Phys. D 10, 81 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Margolus, N.: Crystalline Computation. In: Hey, A. (ed.) Feynman and Computation. Perseus Books, 267 (1998). arXiv:comp-gas/9811002

  8. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)

    Google Scholar 

  9. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  10. Rothman, D., Zaleski, S.: Lattice Gas Cellular Automata: Simple Models of Complex Hydrodynamics. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  11. Rivet, J.P., Boon, J.P.: Lattice Gas Hydrodynamics. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  12. Fredkin, E.: A computing architecture for physics. In: CF ’05 Proceedings of the 2nd conference on computing frontiers. p. 273. ACM (2005)

    Google Scholar 

  13. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    Google Scholar 

  14. Toffoli, T., Margolus, N.: Invertible cellular automata: a review. Phys. D 45, 229 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kari, J.: Representation of reversible cellular automata with block permutations. Math. Syst. Theory 29, 47 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Durand-Lose, J.: Representing reversible cellular automata with reversible block cellular automata. Discrete Math. Theor. Comp Sci. Proc. AA, 145 (2001)

    Google Scholar 

  17. Ulam, S.: Random Processes and Transformations. In: Proceedings of the International Congress on Mathematics, 1950, Vol. 2, p. 264. (1952)

    Google Scholar 

  18. von Neumann, J.: Theory of Self-Reproducing Automata, University of Illinois Press, Champaign (1966)

    Google Scholar 

  19. Zuse, K.: Calculating Space. MIT Tech. Transl. AZT-70-164-GEMIT (1970)

    Google Scholar 

  20. Margolus, N.: Mechanical Systems that are both Classical and Quantum. arXiv:0805.3357

  21. Margolus, N.: Universal cellular automata based on the collisions of soft spheres. In: Griffeath, D., Moore, C. (eds.) New Constructions in Cellular Automata. p. 231. Oxford University Press, Oxford (2003). arXiv:0806.0127

  22. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hrgovčić, H.: Discrete representations of the n-dimensional wave equation. J. Phys. A: Math. Gen. 25, 1329 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Toffoli, T.: Action, or the fungibility of computation. In: Hey, A (ed.) Feynman and Computation, p. 349. Perseus Books (1998)

    Google Scholar 

  25. Margolus, N.: Physics and computation. Ph.D. Thesis, Massachusetts Institute of Technology (1987)

    Google Scholar 

  26. Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Phys. D 10, 117 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Smith, M.: Representation of geometrical and topological quantities in cellular automata. Phys. D 45, 271 (1990)

    Article  MATH  Google Scholar 

  28. Ben-Abraham, S.I.: Curious properties of simple random walks. J. Stat. Phys. 73, 441 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I thank Micah Brodsky and Gerald Sussman for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Margolus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Margolus, N. (2017). The Ideal Energy of Classical Lattice Dynamics. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-33924-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33924-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33923-8

  • Online ISBN: 978-3-319-33924-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics