Skip to main content

The Group Zoo of Classical Reversible Computing and Quantum Computing

  • Chapter
  • First Online:

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 22))

Abstract

By systematically inflating the group of \(n \times n\) permutation matrices to the group of \(n \times n\) unitary matrices, we can see how classical computing is embedded in quantum computing. In this process, an important role is played by two subgroups of the unitary group U(n), i.e. XU(n) and ZU(n). Here, XU(n) consists of all \(n \times n\) unitary matrices with all line sums (i.e. the n row sums and the n column sums) equal to 1, whereas ZU(n) consists of all \(n \times n\) diagonal unitary matrices with upper-left entry equal to 1. As a consequence, quantum computers can be built from NEGATOR gates and PHASOR gates. The NEGATOR is a 1-qubit circuit that is a natural generalization of the 1-bit NOT gate of classical computing. In contrast, the PHASOR is a 1-qubit circuit not related to classical computing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Phys. 21, 219 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. De Vos A., Van Rentergem, Y.: From group theory to reversible computers. In: Adamatzky, A., Teuscher, C. (eds.) From Utopian to Genuine Unconventional Computers, pp 183-208. Luniver Press, Frome (2006)

    Google Scholar 

  4. De Vos, A.: Reversible Computing. Wiley-VCH, Weinheim (2010)

    Book  MATH  Google Scholar 

  5. Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer, Dordrecht (2010)

    Book  MATH  Google Scholar 

  6. Soeken, M., Wille, R., Keszöcze, O., Miller, M., Drechsler, R.: Embedding of large Boolean functions for reversible logic. ACM J. Emerg. Technol. Comput. Syst. 12, 41 (2015)

    Google Scholar 

  7. De Vos, A., De Baerdemacker, S.: The decomposition of U(\(n\)) into XU(\(n\)) and ZU(\(n\)). J. Mult. Val. Log. Soft Comp. 26, 141 (2016)

    Google Scholar 

  8. De Vos, A., De Baerdemacker, S.: Matrix calculus for classical and quantum circuits. ACM J. Emerg. Technol. Comput. Syst. 11, 9 (2014)

    Google Scholar 

  9. De Vos, A., De Baerdemacker, S.: On two subgroups of U(\(n\)), useful for quantum computing. In: Proceedings of the 30th International Colloquium on Group-theoretical Methods in Physics, Gent, 14–18 July 2014. J. Phys. Conf. Ser. 597, 012030 (2015)

    Google Scholar 

  10. Sasanian, Z., Miller, D.: Transforming MCT circuits to NCVW circuits. In: Proceedings of the 3 rd International Workshop on Reversible Computation, pp 163–174. Gent (2011)

    Google Scholar 

  11. Amy, M., Maslov, D., Mosca, M.: Polynomial-time \(T\)-depth optimization of Clifford\(+T\) circuits via matroid partitioning. In: IEEE Trans. on Comput-Aided Des. Integr. Circuits Syst. 33, 1486 (2013)

    Google Scholar 

  12. Selinger, P.: Efficient Clifford\(+T\) approximations of single-qubit operators. Quantum Inform. Comput. 15, 159 (2015)

    MathSciNet  Google Scholar 

  13. Deutsch, D.: Quantum computation. Phys. World 5, 57 (1992)

    Article  MathSciNet  Google Scholar 

  14. Galindo, A., Martín-Delgado, M.: Information and computation: classical and quantum aspects. Rev. Moder. Phys. 74, 347 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Vos, A., De Beule, J., Storme, L.: Computing with the square root of NOT. Serdica J. Comput. 3, 359 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Vandenbrande, S., Van Laer, R., De Vos, A.: The computational power of the square root of NOT. In: Proceedings of the 10 th Interntional Workshop on Boolean Problems, pp 257–262. Freiberg, 19-21 September 2012

    Google Scholar 

  17. De Vos, A., De Baerdemacker, S.: The NEGATOR as a basic building block for quantum circuits. Open Syst. Inf. Dyn. 20, 1350004 (2013)

    Google Scholar 

  18. De Vos, A., De Baerdemacker, S.: Scaling a unitary matrix. Open Syst. Inf. Dyn. 21, 1450013 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Idel, M., Wolf, M.: Sinkhorn normal form for unitary matrices. Lin. Algeb. Appl. 471, 76 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Beth, T., Rötteler, M.: Quantum algorithms: applicable algebra and quantum physics, In: Alber, G., Beth, T., Horodecki, M., Horodecki, P., Horodecki, R., Rötteler, M., Weinfurter, H., Werner, R., Zeilinger, A. (eds.) Quantum Information, pp 96–150. Springer, Berlin (2001)

    Google Scholar 

  21. Barenco, A., Bennett, C., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  Google Scholar 

  22. Hermann, R.: Lie Groups for Physicists. Benjamin Inc., New York (1966)

    MATH  Google Scholar 

  23. Bullock, S., Markov, I.: An arbitrary two-qubit computation in 23 elementary gates. Phys. Rev. A 68, 012318 (2003)

    Article  Google Scholar 

  24. De Vos, A., De Baerdemacker, S.: Symmetry groups for the decomposition of reversible computers, quantum computers, and computers in between. Symmetry 3, 305 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis De Vos .

Editor information

Editors and Affiliations

Appendix

Appendix

For any matrix P from the group P(n), the following property holds:

$$ P = C \left( \begin{array}{cc} 1 &{} \\ &{} P\, ' \end{array} \right) , $$

where

  • \(P\, '\) is a member of P(\(n-1\)) and

  • C is a member of CP(n).

Here, CP(n) denotes the group of \(n \times n\) circulant permutation matrices. It is a group isomorphic with the cyclic group Z \(_n\), a finite group of order n. Remarkable is the fact that here \({\tiny \left( \begin{array}{cc} 1 &{} \\ &{} P\ ' \end{array} \right) }\) is only multiplied to the left with a circulant matrix, whereas in decomposition (18.5), the matrix \({\tiny \left( \begin{array}{cc} 1 &{} \\ &{} X\, ' \end{array} \right) }\) is multiplied both to the left and to the right with a circulant matrix.

The decomposition algorithm is very straightforward: suffice it to choose C such that it has the same leftmost column as the given matrix P. Subsequently, the matrix \({\tiny \left( \begin{array}{cc} 1 &{} \\ &{} P\, ' \end{array} \right) }\) follows automatically by computing \(C^{-1}P\). Here follows an example from P(4):

$$ \left( \begin{array}{cccc} 0 &{} 0 &{} 0 &{} 1 \\ 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \end{array} \right) = \left( \begin{array}{cccc} 0 &{} 0 &{} 0 &{} 1 \\ 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \end{array} \right) \left( \begin{array}{cccc} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \end{array} \right) . $$

By applying the theorem again and again, we find the following decomposition:

$$\begin{aligned} P = C_n\ \left( \begin{array}{cc} 1 &{} \\ &{} C_{n-1} \end{array} \right) \ \ldots \ \ \left( \begin{array}{cc} {\mathbf 1}_{n-3} &{} \\ &{} C_3 \end{array} \right) \ \left( \begin{array}{cc} {\mathbf 1}_{n-2} &{} \\ &{} C_2 \end{array} \right) . \end{aligned}$$
(18.7)

where all \(C_k\) are CP(k) matrices. We conclude: any \(n \times n\) permutation matrix can be decomposed as a product of \(n-1\) matrices of the form \({\tiny \left( \begin{array}{cc} {\mathbf 1}_{n-k} &{} \\ &{} C_k \end{array} \right) }\). We give an example:

$$ \left( \begin{array}{cccc} 0 &{} 0 &{} 0 &{} 1 \\ 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \end{array} \right) = \left( \begin{array}{cccc} 0 &{} 0 &{} 0 &{} 1 \\ 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \end{array} \right) \left( \begin{array}{cccc} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 \end{array} \right) \left( \begin{array}{cccc} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 1 &{} 0 \end{array} \right) . $$

Decomposition (18.6) is not a straightforward generalization of (18.7). This constitutes an illustration of the fact that, in spite of an overall similarity between the group P(n) and the group XU(n), literal translations from P(n) properties to XU(n) properties sometimes fail [24].

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

De Vos, A., De Baerdemacker, S. (2017). The Group Zoo of Classical Reversible Computing and Quantum Computing. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-33924-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33924-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33923-8

  • Online ISBN: 978-3-319-33924-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics