Skip to main content

Nonuniversality in Computation: Fifteen Misconceptions Rectified

  • Chapter
  • First Online:
Advances in Unconventional Computing

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 22))

Abstract

In January 2005 I showed that universality in computation cannot be achieved. Specifically, I exhibited a number of distinct counterexamples, each of which sufficing to demonstrate that no finite and fixed computer can be universal in the sense of being able to simulate successfully any computation that can be executed on any other computer. The number and diversity of the counterexamples attest to the general nature of the nonuniversality result. This not only put to rest the “Church–Turing Thesis”, by proving it to be a false conjecture, but also was seen to apply, in addition to the Turing Machine , to all computational models, past, present, and future, conventional and unconventional. While ten years have now passed since nonuniversality in computation was established, the result remains largely misunderstood. There appear to be at least two main reasons for this state of affairs. As often happens to new ideas, the nonuniversality result was confronted with a stubborn entrenchment in a preconceived, deeply held, and quasi-religious belief in the existence of a universal computer. This was exacerbated by a failure to read the literature that demonstrates why such a belief is unfounded. Behavior of this sort, sadly not uncommon in science, explains the enduring mirage of the universal computer. The purpose of this chapter is to rectify the most notorious misconceptions associated with nonuniversality in computation. These misconceptions were expressed to the author in personal communications, orally, by email, and in referee reports. Each misconception is quoted verbatim and a detailed response to it is provided. The chapter concludes by inviting the reader to take a computational challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramsky, S., et al.: Handbook of Logic in Computer Science. Clarendon Press, Oxford (1992)

    MATH  Google Scholar 

  2. Akl, S.G.: Parallel Computation: Models and Methods. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  3. Akl, S.G.: Superlinear performance in real-time parallel computation. J. Supercomput. 29, 89–111 (2004)

    Article  MATH  Google Scholar 

  4. Akl, S.G.: The myth of universal computation. In: Trobec, R., Zinterhof, P., Vajteršic, M., Uhl, A. (eds.) Parallel Numerics, pp. 211–236. University of Salzburg, Salzburg and Jozef Stefan Institute, Ljubljana (2005)

    Google Scholar 

  5. Akl, S.G.: Three counterexamples to dispel the myth of the universal computer. Parallel Proc. Lett. 16, 381–403 (2006)

    Article  MathSciNet  Google Scholar 

  6. Akl, S.G.: Conventional or unconventional: is any computer universal? In: Adamatzky, A., Teuscher, C. (eds.) From Utopian to Genuine Unconventional Computers, pp. 101–136. Luniver Press, Frome (2006)

    Google Scholar 

  7. Akl, S.G.: Gödel’s incompleteness theorem and nonuniversality in computing. In: Nagy, M., Nagy, N. (eds.) Proceedings of the Workshop on Unconventional Computational Problems, Sixth International Conference on Unconventional Computation, pp. 1–23. Kingston (2007)

    Google Scholar 

  8. Akl, S.G.: Even accelerating machines are not universal. Int. J. Unconv. Comp. 3, 105–121 (2007)

    Google Scholar 

  9. Akl, S.G.: Unconventional computational problems with consequences to universality. Int. J. Unconv. Comp. 4, 89–98 (2008)

    Google Scholar 

  10. Akl, S.G.: Evolving computational systems. In: Rajasekaran, S., Reif, J.H. (eds.) Parallel Computing: Models, Algorithms, and Applications, pp. 1–22. Taylor and Francis, Boca Raton (2008)

    Google Scholar 

  11. Akl, S.G.: Ubiquity and simultaneity: the science and philosophy of space and time in unconventional computation. Keynote address, Conference on the Science and Philosophy of Unconventional Computing, The University of Cambridge, Cambridge (2009)

    Google Scholar 

  12. Akl, S.G.: Time travel: a new hypercomputational paradigm. Int. J. Unconv. Comp. 6, 329–351 (2010)

    Google Scholar 

  13. Akl, S.G.: What is computation? Int. J. Parallel, Emerg. Distrib. Syst. 29, 337–345 (2014)

    Google Scholar 

  14. Akl, S.G.: Nonuniversality explained. Int. J. Parallel Emerg. Distrib. Syst. (To appear in)

    Google Scholar 

  15. Akl, S.G., Nagy, M.: Introduction to parallel computation. In: Trobec, R., Vajteršic, M., Zinterhof, P. (eds.) Parallel Computing: Numerics, Applications, and Trends, pp. 43–80. Springer, London (2009)

    Chapter  Google Scholar 

  16. Akl, S.G.: Non-Universality in Computation: The Myth of the Universal Computer. School of Computing, Queen’s University. http://research.cs.queensu.ca/Parallel/projects.html

  17. Akl, S.G.: A computational challenge. School of Computing, Queen’s University. http://www.cs.queensu.ca/home/akl/CHALLENGE/A_Computational_Challenge.htm

  18. Akl, S.G.: Universality in computation: Some quotes of interest. Technical Report No. 2006-511, School of Computing, Queen’s University. http://www.cs.queensu.ca/home/akl/techreports/quotes.pdf

  19. Akl, S.G., Nagy: M.: The future of parallel computation. In: Trobec, R., Vajteršic, M., Zinterhof, P. (eds.) Parallel Computing: Numerics, Applications, and Trends, pp. 471-510. Springer, London (2009)

    Google Scholar 

  20. Akl, S.G., Salay, N.: On computable numbers, nonuniversality, and the genuine power of parallelism. Int. J. Unconv. Comput. 11, 283–297 (2015)

    Google Scholar 

  21. Akl, S.G., Yao, W.: Parallel computation and measurement uncertainty in nonlinear dynamical systems. J. Math. Model. Alg. 4, 5–15 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Davies, E.B.: Building infinite machines. Br. J. Phil. Sci. 52, 671–682 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Davis, M.: The Universal Computer. W.W. Norton, New York (2000)

    MATH  Google Scholar 

  24. Denning, P.J., Dennis, J.B., Qualitz, J.E.: Machines, Languages, and Computation. Prentice-Hall, Englewood Cliffs (1978)

    MATH  Google Scholar 

  25. Deutsch, D.: The Fabric of Reality. Penguin Books, London (1997)

    Google Scholar 

  26. Durand-Lose, J.: Abstract geometrical computation for black hole computation. Research Report No. 2004-15, Laboratoire de l’Informatique du Parallélisme, École Normale Supérieure de Lyon, Lyon (2004)

    Google Scholar 

  27. Einstein, A.: Letter to Erwin Schrödinger. In: Gilder, L., The Age of Entanglement, p. 170. Vintage Books, New York (2009)

    Google Scholar 

  28. Fortnow, L.: The enduring legacy of the Turing machine. http://ubiquity.acm.org/article.cfm?id=1921573

  29. Fraser, R., Akl, S.G.: Accelerating machines: a review. Int. J. Parallel, Emerg. Distrib. Syst. 23, 81–104 (2008)

    Google Scholar 

  30. Gleick, J.: The Information: A History, a Theory, a Flood. HarperCollins, London (2011)

    Google Scholar 

  31. Gould, S.J.: Evolution as fact and theory. Discover 2, 34–37 (1981)

    Google Scholar 

  32. Harel, D.: Algorithmics: The Spirit of Computing. Addison-Wesley, Boston (Reading (1992))

    Google Scholar 

  33. Hillis, D.: The Pattern on the Stone. Basic Books, New York (1998)

    Google Scholar 

  34. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21, 549–568 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hopcroft, J.E., Ullman, J.D.: Formal Languages and their Relations to Automata. Addison-Wesley, Boston, Reading (1969)

    Google Scholar 

  36. Hypercomputation. http://en.wikipedia.org/wiki/Hypercomputation

  37. James, W.: Pragmatism, A New Name for Some Old Ways of Thinking. Longman Green and Co., New York (1907)

    Google Scholar 

  38. Kelly, K.: God is the machine. Wired 10 (2002)

    Google Scholar 

  39. Kleene, S.C.: Introduction to Metamathematics. North Holland, Amsterdam (1952)

    MATH  Google Scholar 

  40. Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation. Prentice Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  41. Lloyd, S., Ng, Y.J.: Black Hole Comput. Sci. Am. 291, 53–61 (2004)

    Google Scholar 

  42. Lloyd, S.: Programming the Universe. Knopf, New York (2006)

    Google Scholar 

  43. Mandrioli, D., Ghezzi, C.: Theoretical Foundations of Computer Science. Wiley, New York (1987)

    MATH  Google Scholar 

  44. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  45. Nagy, M., Akl, S.G.: On the importance of parallelism for quantum computation and the concept of a universal computer. In: Calude, C.S., Dinneen, M.J., Paun, G., Pérez-Jiménez, M. de J., Rozenberg, G. (eds.) Unconventional Computation, pp. 176-190. Springer, Heildelberg (2005)

    Google Scholar 

  46. Nagy, M., Akl, S.G.: Quantum measurements and universal computation. Int. J. Unconv. Comput. 2, 73–88 (2006)

    Google Scholar 

  47. Nagy, M., Akl, S.G.: Quantum computing: Beyond the limits of conventional computation. Int. J. Parallel Emerg. Distrib. Syst. 22, 123–135 (2007)

    Google Scholar 

  48. Nagy, M., Akl, S.G.: Parallelism in quantum information processing defeats the Universal Computer. Par. Proc. Lett. 17, 233–262 (2007)

    Article  MathSciNet  Google Scholar 

  49. Nagy, N., Akl, S.G.: Computations with uncertain time constraints: effects on parallelism and universality. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds.) Unconventional Computation, pp. 152–163. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  50. Nagy, N., Akl, S.G.: Computing with uncertainty and its implications to universality. Int. J. Parallel Emerg. Distrib. Syst. 27, 169–192 (2012)

    Google Scholar 

  51. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, New York (1990)

    Book  MATH  Google Scholar 

  52. Rucker, R.: The Lifebox, the Seashell, and the Soul. Thunder’s Mouth Press, New York (2005)

    Google Scholar 

  53. Savage, J.E.: Models of Computation. Addison-Wesley, Boston, Reading (1998)

    Google Scholar 

  54. Seife, C.: Decoding the Universe. Viking Penguin, New York (2006)

    Google Scholar 

  55. Siegfried, T.: The Bit and the Pendulum. Wiley, New York (2000)

    Google Scholar 

  56. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company, Boston (1997)

    MATH  Google Scholar 

  57. Stepney, S.: Journeys in non-classical computation. In: Hoare, T., Milner, R. (eds.) Grand Challenges in Computing Research, pp. 29–32. BCS, Swindon (2004)

    Google Scholar 

  58. Stepney, S.: The neglected pillar of material computation. Phys. D 237, 1157–1164 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  59. Tipler, F.J.: The Physics of Immortality: Modern Cosmology. God and the Resurrection of the Dead. Macmillan, London (1995)

    Google Scholar 

  60. Toffoli, T.: Physics and Computation. Int. J. Theor. Phys. 21, 165–175 (1982)

    Article  MathSciNet  Google Scholar 

  61. Turing, A.M.: Systems of logic based on ordinals. Proc. Lond. Math. Soc. 2(45), 161–228 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  62. Vedral, V.: Decoding Reality. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  63. Wegner, P., Goldin, D.: Computation beyond Turing Machines. Commun. ACM 46, 100–102 (1997)

    Article  Google Scholar 

  64. Wheeler, J.A.: Information, physics, quanta: The search for links. In: Proceedings of the Third International Symposium on Foundations of Quantum Mechanics in Light of New Technology, pp. 354-368. Tokyo (1989)

    Google Scholar 

  65. Wheeler, J.A.: Information, physics, quantum: the search for links. In: Zurek, W. (ed.) Complexity, Entropy, and the Physics of Information. Addison-Wesley, Redwood City (1990)

    Google Scholar 

  66. Wheeler, J.A.: At Home in the Universe. American Institute of Physics Press, Woodbury (1994)

    Google Scholar 

  67. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    MATH  Google Scholar 

  68. Zuse, K.: Calculating space. MIT Technical Translation AZT-70-164-GEMIT, Massachusetts Institute of Technology (Project MAC). Cambridge (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim G. Akl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akl, S.G. (2017). Nonuniversality in Computation: Fifteen Misconceptions Rectified. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-33924-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33924-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33923-8

  • Online ISBN: 978-3-319-33924-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics