Skip to main content

Soft Plant Robotic Solutions: Biological Inspiration and Technological Challenges

  • Chapter
  • First Online:
Advances in Unconventional Computing

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 23))

Abstract

Plants have a sessile lifestyle, and, as a consequence, their structures have a modular organization to ensure surviving in case of environmental damage or predation. Moreover, they developed strategies for efficiently use the resources available in their surroundings, and a well-organized sensing system that allows them to explore the environment and react rapidly to potentially dangerous circumstances. In particular plant roots behaviour emerges from the complex and dynamic interaction between their morphology, sensory-motor control, and environment. Despite the richness of behaviours, mechanisms and features shown, only in recent years scientists and engineers started to consider plants as a possible source of inspiration for developing new technological solutions. In this chapter we highlight how plants and plant roots represent a new model in bioinspired soft robotics and technologies, reporting on few examples of solutions inspired by plants, including growing robots, osmosis-based actuators, controllable hygromorphic materials, and mechanoperceptive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  2. Pfeifer, R., Bongard, J.: How The Body Shapes The Way We Think: A New View of Intelligence. MIT Press, Cambridge (2007)

    Google Scholar 

  3. Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088 (2007)

    Article  Google Scholar 

  4. Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., Laschi, C.: Design concept and validation of a robotic arm inspired by the octopus. Mater. Sci. Eng. C 31, 1230–1239 (2011)

    Article  Google Scholar 

  5. Hodge, A.: Root decisions. Plant Cell Environ. 32, 7–9 (2009)

    Article  Google Scholar 

  6. Trewavas, A.: What is plant behaviour? Plant Cell Environ. 32, 606–616 (2009)

    Article  Google Scholar 

  7. Mazzolai, B., Laschi, C., Dario, P., Mugnai, S., Mancuso, S.: The plant as a biomechatronic system. Plant Signal. Behav. 5(2), 1 (2010)

    Article  Google Scholar 

  8. Sadeghi, A., Tonazzini, A., Popova, L., Mazzolai, B.: A novel growing device inspired by plant root soil penetration behaviors. PLoS ONE 9(2), e90139 (2014)

    Article  Google Scholar 

  9. Mazzolai, B., Beccai, L., Mattoli, V.: Plants as model in biomimetics and biorobotics: new perspectives. Front. Bioeng. Biotechnol. Bionics. Biomim. 2, 2 (2014)

    Google Scholar 

  10. Sinibaldi, E., Puleo, G., Mattioli, F., Mattoli, V., Di Michele, F., Beccai, L., Tramacere, F., Mancuso, S., Mazzolai, B.: Osmotic actuation modelling for innovative biorobotic solutions inspired by the plant kingdom. Bioinspiration Biomim. 8, 025002 (2013)

    Article  Google Scholar 

  11. Sinibaldi, E., Argiolas, A., Puleo, G.L., Mazzolai, B.: Another lesson from plants: the forward osmosis-based actuator. PLoS ONE 9(7), e102461 (2014)

    Article  Google Scholar 

  12. Iida, F., Laschi, C.: Soft robotics: challenges and perspectives. Procedia Comput. Sci. 7, 99–102 (2011)

    Article  Google Scholar 

  13. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Tren. Biotechnol. 31, 287–294 (2013)

    Article  Google Scholar 

  14. Pfeifer, R., Lungarella, M., Iida, F.: The challenges ahead for bio-inspired ‘soft’ robotics. Commun. ACM 55, 76–87 (2012)

    Article  Google Scholar 

  15. Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5, 99–117 (2008)

    Article  Google Scholar 

  16. Trimmer, B.: Soft robots. Curr. Biol. 23, R639–R641 (2013)

    Article  Google Scholar 

  17. Lipson, H.: Challenges and opportunities for design, simulation, and fabrication of soft robots. SoRo 1, 21–27 (2013)

    Google Scholar 

  18. Lucarotti, C., Totaro, M., Sadeghi, A., Mazzolai, B., Beccai, L.: Revealing bending and force in a soft body through a plant root inspired approach. Sci. Rep. 5, 8788 (2015)

    Article  Google Scholar 

  19. Mazzolai, B., Mondini, A., Corradi, P., Laschi, C., Mattoli, V., Sinibaldi, E., Dario, P.: A miniaturized mechatronic system inspired by plant roots. IEEE Trans. Mech. 16(2), 201–212 (2011)

    Article  Google Scholar 

  20. Laschi, C., Mazzolai, B., Cianchetti, M., Mattoli, V., Bassi-Luciani, L., Dario, P.: Design of a biomimetic robotic octopus arm. Bioinspiration Biomim. 4, I015006 (2009)

    Article  Google Scholar 

  21. Margheri, L., Laschi, C., Mazzolai, B.: Soft robotic arm inspired by the octopus.I. from biological functions to artificial requirements. Bioinspiration Biomim. 7, 025004 (2012)

    Article  Google Scholar 

  22. Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P., Laschi, C.: Soft robotic arm inspired by the octopus. II. from artificial requirements to innovative technological solutions. Bioinspiration Biomim. 7, 025005 (2012)

    Article  Google Scholar 

  23. Ciszak, M., Comparini, D., Mazzolai, B., Baluska, F., Arecchi, T.-F., Vicsek, T., Mancuso, S.: Swarming behavior in plant roots. Plos One 7(1), e29759 (2012)

    Article  Google Scholar 

  24. Darwin, C.: The Power of Movement in Plants. John Murray, London (1880)

    Book  Google Scholar 

  25. Inoue, N., Arase, T., Hagiwara, M., Amano, T., Hayashi, T., et al.: Ecological significance of root tip rotation for seedling establishment of Oryza sativa L. Ecol. Res. 14, 31–38 (1999)

    Article  Google Scholar 

  26. Brown, A.H.: Circumnutations: from Darwin to space flights. Plant Physiol. 101, 345–348 (1993)

    Google Scholar 

  27. Vollsnes, A., Futsaether, C., Bengough, A.: Quantifying rhizosphere particle movement around mutant maize roots using time lapse imaging and particle image velocimetry. Eur. J. Soil Sci. 61, 926–939 (2010)

    Article  Google Scholar 

  28. Verbelen, J.-P., De Cnodder, T., Le, J., Vissenberg, K., Baluska, F.: Root apex of Arabidopsis thaliana consists of four distinct zones of growth activities: meristematic zone, transition zone, fast elongation zone, and growth terminating zone. Plant Sig. Behav. 1, 296–304 (2006)

    Article  Google Scholar 

  29. Dexter, A.: Mechanics of root growth. Plant Soil 98, 303–312 (1987)

    Article  Google Scholar 

  30. Baluska, F., Mancuso, S., Volkmann, D., Barlow, P.: Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia 59, 7–19 (2004)

    Google Scholar 

  31. Ishikawa, H., Evans, M.L.: Specialized zones of development in roots. Plant Physiol. 109, 725 (1995)

    Google Scholar 

  32. Barlow, P.W.: The root cap: cell dynamics, cell differentiation and cap function. J. Plant Growth Reg. 21, 261–286 (2002)

    Article  Google Scholar 

  33. Barlow, P.W.: The response of roots and root systems to their environment? An interpretation derived from an analysis of the hierarchical organization of plant life. Env. Exp. Bot. 33, 1–10 (1993)

    Article  MathSciNet  Google Scholar 

  34. Unger, P.W., Kaspar, T.C.: Soil compaction and root growth: a review. Agronomy J. 86, 759–766 (1994)

    Article  Google Scholar 

  35. Iijima, M., Morita, S., Barlow, P.W.: Structure and function of the root cap. Plant Prod. Sci. 11, 17–27 (2008)

    Article  Google Scholar 

  36. Schopfer, P.: Biomechanics of plant growth. Am. J. Bot. 93, 1415–1425 (2006)

    Article  Google Scholar 

  37. Croser, C., Bengough, A.G., Pritchard, J.: The effect of mechanical impedance on root growth in pea (Pisum sativum). II. cell expansion and wall rheology during recovery. Physiol. Plantarum 109, 150–159 (2000)

    Article  Google Scholar 

  38. Tonazzini, A., Sadeghi, A., Popova, L., Mazzolai, B.: Plant root strategies for robotic soil penetration. Biomim. Biohybrid Syst. 8064, 447–449 (2013)

    Article  Google Scholar 

  39. Hawes, M.C., Bengough, G., Cassab, G., Ponce, G.: Root caps and rhizosphere. J. Plant Growth Reg. 21, 352–367 (2002)

    Article  Google Scholar 

  40. Bengough, A., McKenzie, B.: Sloughing of root cap cells decreases the frictional resistance to maize (Zea mays L.) root growth. J. Exp. Bot. 48, 885 (1997)

    Article  Google Scholar 

  41. Iijima, M., Higuchi, T., Barlow, P.W., Bengough, A.G.: Root cap removal increases root penetration resistance in maize (Zea mays L.). J. Exp. Bot. 54, 2105 (2003)

    Article  Google Scholar 

  42. Bengough, A., Kirby, J.: Tribology of the root cap in maize (Zea mays) and peas (Pisum sativum). New phytol. 142, 421–425 (1999)

    Article  Google Scholar 

  43. Goodman, A., Ennos, A.: The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize. Annal. Bot. 83, 293–302 (1999)

    Article  Google Scholar 

  44. Bengough, A., McKenzie, B., Hallett, P., Valentine, T.: Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 62, 59–68 (2011)

    Article  Google Scholar 

  45. Czarnes, S., Hiller, S., Dexter, A., Hallett, P., Bartoli, F.: Root-soil adhesion in the maize rhizosphere: the rheological approach. Plant Soil 211, 69–86 (1999)

    Article  Google Scholar 

  46. Sadeghi, A., Tonazzini, A., Popova, L., Barbara, M.: Innovative robotic mechanism for soil penetration inspired by plant roots. Proc. IEEE ICRA (2013)

    Google Scholar 

  47. Crump, S.S.: Apparatus and method for creating three-dimensional objects. US Patent 5,121,329 1992

    Google Scholar 

  48. Gilroy, S., Trewavas, A.: Signal processing and transduction in plant cells: the end of the beginning? Nat. Rev. Mol. Cell Biol. 2, 307–314 (2001)

    Article  Google Scholar 

  49. Couzin, I.: Collective minds. Nature 445, 715 (2007)

    Article  Google Scholar 

  50. Dumais, J., Forterre, Y.: "Vegetable Dynamicks": The role of water in plant movements. Annu. Rev. Fluid Mech. 44, 453–478 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Darwin, C.: Insectivorous Plants. Murray, London (1875)

    Book  Google Scholar 

  52. Hill, B.S., Findlay, G.P.: The power of movement in plants: the role of osmotic machines. Q Rev. Biophys. 14, 173–222 (1981)

    Article  Google Scholar 

  53. Forterre, Y., Skotheim, J.M., Mahadevan, Dumais J.L.: How the Venus fly-trap snaps. Nature 433, 421–425 (2005)

    Google Scholar 

  54. Samejima, M., Sibaoka, T.: Changes in the extracellular ion concentration in the main pulvinus of Mimosa pudica during rapid movement and recovery. Plant Cell Physiol. 21(3), 467–479 (1980)

    Google Scholar 

  55. Taiz, L., Zeiger, E.: Plant Physiology. Sinauer Associates, Sunderland (2003)

    Google Scholar 

  56. Baskin, T.I.: Anisotropic expansion of the plant cell wall. Annu. Rev. Cell Dev. Biol. 21, 203–322 (2005)

    Article  Google Scholar 

  57. Bengough, A.G., Croser, C., Pritchard, J.: A biophysical analysis of root growth under mechanical stress. Plant Soil 189, 155–164 (1997)

    Article  Google Scholar 

  58. Atkins, P.W., de Paula, J.: Phys. Chem., 8th edn. Oxford University Press, New York (2006)

    Google Scholar 

  59. Cath, T.Y., Childress, A.E., Elimelech, M.: Forward osmosis: principles, applications, and recent developments. J. Membr. Sci. 281, 70–87 (2006)

    Article  Google Scholar 

  60. Li, Y.-H., Su, Y.-C.: Miniature osmotic actuators for controlled maxillofacial distraction osteogenesis. J. Micromech. Microeng. 20, 1–8 (2010)

    MathSciNet  Google Scholar 

  61. Piyasena, M.E., Newby, R., Miller, T.J., Shapiro, B., Smela, E.: Electroosmotically driven microfluidic actuators. Sens. Actuator. B 141, 263–269 (2009)

    Article  Google Scholar 

  62. Wang, C., Wang, L., Zhu, X., Wang, Y., Xue, J.: Low-voltage electroosmotic pumps fabricated from track-etched polymer membranes. Lab. Chip 12, 1710–1716 (2012)

    Article  Google Scholar 

  63. Sudaresan, V.B., Leo, D.J.: Modeling and characterization of a chemomechanical actuator using protein transporter. Sens. Actuator. B 131, 384–393 (2008)

    Article  Google Scholar 

  64. Herrlich, S., Spieth, S., Messner, S., Zengerle, R.: Osmotic micropumps for drug delivery. Adv. Drug Deliv. Rev. 64, 1617–1627 (2012)

    Article  Google Scholar 

  65. Burgert, I., Fratzl, P.: Actuation systems in plants as prototypes for bioinspired devices. Philos. Trans. Math. Phys. Eng. Sci. 367, 1541 (2009)

    Article  Google Scholar 

  66. Dawson, C., Vincent, J.F.V., Rocca, A.-M.: How pine cones open. Nature 290, 668 (1997)

    Article  Google Scholar 

  67. Elbaum, R., Zaltzman, L., Burgert, I., Fratzl, P.: The role of wheat awns in the seed dispersal unit. Science 316, 884 (2007)

    Article  Google Scholar 

  68. Reyssat, E., Mahadevan, L.: Hygromorphs: from pine cones to biomimetic bilayers. J. R Soc. Interface 6, 951 (2009)

    Article  Google Scholar 

  69. Taccola, S., Greco, F., Sinibaldi, E., Mondini, A., Mazzolai, B., Mattoli, V.: Toward a new generation of electrically controllable hygromorphic soft actuators. Adv. Mater. 27(10), 1668–1675 (2015)

    Article  Google Scholar 

  70. Taccola, S., Greco, F., Zucca, A., Innocenti, C., de Julin, Fernndez C., Campo, G., Sangregorio, C., Mazzolai, B., Mattoli, V.: Characterization of free-standing PEDOT:PSS/iron oxide nanoparticles composite thin films and application as conformable humidity sensors. ACS Appl. Mater. Interface. 5(13), 6324–6332 (2013)

    Article  Google Scholar 

  71. Okuzaki, H., Suzuki, H., Ito, T.: Electrically driven PEDOT/PSS actuators. Synth. Met. 159, 2233 (2009)

    Article  Google Scholar 

  72. Gibson, R.F.: A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 92, 2793 (2010)

    Article  Google Scholar 

  73. Braam, J.: In touch: Plant responses to mechanical stimuli. New Phytol. 165, 373 (2005)

    Article  Google Scholar 

  74. Monshausen, G.B., Haswell, E.S.: A force of nature: molecular mechanisms of mechanoperception in plants. J. Exp. Bot. 64, 4663–4680 (2013)

    Article  Google Scholar 

  75. Monshausen, G.B., Bibikova, T.N., Weisenseel, M.H., Gilroy, S.: Ca2+regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21, 2341–2356 (2009)

    Article  Google Scholar 

  76. Monshausen, G.B., Gilroy, S.: Feeling green: mechanosensing in plants. Trend. Cell Biol. 19, 228–235 (2009)

    Article  Google Scholar 

  77. Cianchetti, M., Renda, F., Licofonte, A., Laschi, C.: Sensorization of continuum soft robots for reconstructing their spatial configuration. Proc. IEEE BioRob (2012)

    Google Scholar 

  78. Shapiro, Y., Kosa, G., Wolf, A.: Shape tracking of planar hyper-flexible beams via embedded PVDF deflection sensors. IEEE/ASME Trans. Mechatron. 19, 1260–1267 (2014)

    Article  Google Scholar 

  79. http://www.plantoidproject.eu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mazzolai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mazzolai, B., Mattoli, V., Beccai, L. (2017). Soft Plant Robotic Solutions: Biological Inspiration and Technological Challenges. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-33921-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33921-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33920-7

  • Online ISBN: 978-3-319-33921-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics