Skip to main content

On Hybrid Classical and Unconventional Computing for Guiding Collective Movement

  • Chapter
  • First Online:
Advances in Unconventional Computing

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 23))

Abstract

Collective movement in living systems typically displays complex dynamics which cannot be described by the component parts themselves. Plasmodium of slime mould Physarum polycephalum exhibits complex amoeboid movement during its foraging and hazard avoidance which may be influenced by the local placement of attractants, repellents and light irradiation stimuli. Slime mould is a useful inspiration to soft-robotics due to its simple component parts and the distributed nature of its control and locomotion mechanisms. However, it is challenging to interface classical computing devices to a distributed system which utilises self-organised and emergent properties. In this chapter we investigate potential hybrid approaches to the task of automatically guiding collective robotics devices, using a multi-agent model of slime mould. We demonstrate a variety of simple open-loop guidance methods. We then describe a hybrid classical/unconventional computing approach using a closed-loop feedback mechanism with attractant and repellent stimuli. Both stimulus types were capable of successful automatic guidance, but we found that repellent stimuli (a light illumination mask) provided faster and more accurate guidance than attractant sources, which were found to exhibit overshooting phenomena at path turns. The method allows traversal of convoluted arenas with challenging obstacles such as narrow channels and complex gratings, and provides an insight into how unconventional computing substrates may be hybridised with classical computing methods to take advantage of the mutual benefits of both approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A.: Physarum machines: encapsulating reaction-diffusion to compute spanning tree. Naturwissenschaften 94(12), 975–980 (2007)

    Article  Google Scholar 

  2. Adamatzky, A.: Developing proximity graphs by Physarum polycephalum: does the plasmodium follow the toussaint hierarchy. Parallel Processing Letters 19, 105–127 (2008)

    Article  MathSciNet  Google Scholar 

  3. Adamatzky, A.: Steering Todium with Light: Dynamical Programming of Physarum Machine (2009). arXiv:0908.0850

  4. Adamatzky, A.: Manipulating substances with Physarum polycephalum. Mater. Sci. Eng. C 38(8), 1211–1220 (2010)

    Article  Google Scholar 

  5. Adamatzky, A.: Slime mould tactile sensor. Sens. actuators B: Chem. 188, 38–44 (2013)

    Article  Google Scholar 

  6. Adamatzky, A., de Lacy Costello, B., Melhuish, C., Ratcliffe, N.: Experimental reaction-diffusion chemical processors for robot path planning. J. Intell. Robot. Syst. 37(3), 233–249 (2003)

    Google Scholar 

  7. Adamatzky, A., de Lacy, Costello, B., Shirakawa, T.: Universal computation with limited resources: Belousov-Zhabotinsky and Physarum computers. Int. J. Bifurc. Chaos 18(8), 2373–2389 (2008)

    Google Scholar 

  8. Adamatzky, A., Jones, J.: Towards Physarum robots: computing and manipulating on water surface. J. Bionic Eng. 5(4), 348–357 (2008)

    Article  Google Scholar 

  9. Brugués, A., Anon, E., Conte, V., Veldhuis, J.H., Gupta, M., Colombelli, J., Muñoz, J.J., Brodland, G.W., Ladoux, B., Trepat, X.: Forces driving epithelial wound healing. Nat. Phys. (2014)

    Google Scholar 

  10. Buhl, J., Sumpter, D.J.T., Couzin, I.D., Hale, J.J., Despland, E., Miller, E.R., Simpson, S.J.: From disorder to order in marching locusts. Science 312(5778), 1402 (2006)

    Article  Google Scholar 

  11. Carlile, M.J.: Nutrition and chemotaxis in the myxomycete Physarum polycephalum: the effect of carbohydrates on the plasmodium. J. Gen. Microbiol. 63(2), 221–226 (1970)

    Article  Google Scholar 

  12. Durham, A.C.H., Ridgway, E.B.: Control of chemotaxis in Physarum polycephalum. J. Cell Biol. 69, 218–223 (1976)

    Article  Google Scholar 

  13. Friedl, P., Locker, J., Sahai, E., Segall, J.E.: Classifying collective cancer cell invasion. Nat. Cell Biol. 14(8), 777–783 (2012)

    Article  Google Scholar 

  14. Gale, E., Adamatzky, A., de Lacy Costello, B.: Are slime moulds living memristors? Technical report (2013)

    Google Scholar 

  15. Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm intelligence. Swarm Intell. 1(1), 3–31 (2007)

    Article  Google Scholar 

  16. Gholami, A., Steinbock, O., Zykov, V., Bodenschatz, E.: Flow-driven waves during pattern formation of Dictyostelium discoideum. Bull. Am. Phys. Soc. 60 (2015)

    Google Scholar 

  17. Gov, N.S.: Collective cell migration. Cell Matrix Mech. 219 (2014)

    Google Scholar 

  18. Gueron, S., Levin, S.A.: Self-organization of front patterns in large wildebeest herds. J. Theor. Biol. 165(4), 541–552 (1993)

    Article  Google Scholar 

  19. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73(4), 1067 (2001)

    Article  Google Scholar 

  20. Helbing, D., Johansson, A.: Eidgenössische Technische Hochschule. Pedestrian, crowd and evacuation dynamics. Swiss Federal Institute of Technology (2009)

    Google Scholar 

  21. Helbing, D., Molnar, P., Farkas, I.J., Bolay, K.: Self-organizing pedestrian movement. Environ. Plan. B 28(3), 361–384 (2001)

    Article  Google Scholar 

  22. Herbert-Read, J.E., Perna, A., Mann, R.P., Schaerf, T.M., Sumpter, D.J.T., Ward, A.J.W.: Inferring the rules of interaction of shoaling fish. Proc. Natl. Acad. Sci. 108(46), 18726–18731 (2011)

    Article  Google Scholar 

  23. Jones, J.: Characteristics of pattern formation and evolution in approximations of Physarum transport networks. Artif. Life 16(2), 127–153 (2010)

    Article  Google Scholar 

  24. Jones, J.: The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. Int. J. Unconv. Comput. 6, 125–144 (2010)

    Google Scholar 

  25. Jones, J.: From Pattern Formation to Material Computation: Multi-agent Modelling of Physarum Polycephalum. Springer, Heidelberg (2015)

    Google Scholar 

  26. Jones, J.: Mechanisms inducing parallel computation in a model of Physarum polycephalum transport networks. Parallel Process. Lett. 25(01), 1540004 (2015)

    Article  MathSciNet  Google Scholar 

  27. Jones, J.: A morphological adaptation approach to path planning inspired by slime mould. Int. J. Gen. Syst. 44(3), 279–291 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jones, J., Adamatzky, A.: Emergence of self-organized amoeboid movement in a multi-agent approximation of Physarum polycephalum. Bioinspiration Biomim. 7(1), 016009 (2012)

    Article  Google Scholar 

  29. Jones, J., Tsuda, S., Adamatzky, A.: Towards Physarum robots. In: Bio-Inspired Self-Organizing Robotic Systems, pp. 215–251 (2011)

    Google Scholar 

  30. Kalogeiton, V.S., Papadopoulous, D.P., Sirakoulis, G.Ch., Vazquez-Otero, A., Faigl, J., Duro, N., Dormido, R., Henderson, T.C., Joshi, A., Rashkeev, K. et al.: Hey Physarum! can you perform slam? Int. J. Unconv. Comput. 10(4) (2014)

    Google Scholar 

  31. Kessler, M.A., Werner, B.T.: Self-organization of sorted patterned ground. Science 299(5605), 380–383 (2003)

    Article  Google Scholar 

  32. Kishimoto, U.: Rhythmicity in the protoplasmic streaming of a slime mould, Physarum polycephalum. J. Gen. Physiol. 41(6), 1223–1244 (1958)

    Article  Google Scholar 

  33. Kocurek, G., Ewing, R.C.: Aeolian dune field self-organization-implications for the formation of simple versus complex dune-field patterns. Geomorphology 72(1), 94–105 (2005)

    Article  Google Scholar 

  34. Lee, K.J., Cox, E.C., Goldstein, R.E.: Competing patterns of signaling activity in Dictyostelium discoideum. Phys. Rev. Lett. 76(7), 1174 (1996)

    Article  Google Scholar 

  35. Levin, M.: Morphogenetic fields in embryogenesis, regeneration, and cancer: non-local control of complex patterning. Biosystems 109(3), 243–261 (2012)

    Article  Google Scholar 

  36. Matsushita, M., Wakita, J., Itoh, H., Watanabe, K., Arai, T., Matsuyama, T., Sakaguchi, H., Mimura, M.: Formation of colony patterns by a bacterial cell population. Physica A: Stat. Mech. Appl. 274(1), 190–199 (1999)

    Article  Google Scholar 

  37. Nagatani, T.: The physics of traffic jams. Rep. Progr. Phys. 65(9), 1331 (2002)

    Article  Google Scholar 

  38. Nakagaki, T., Ueda, T.: Phase switching of rhythmic contraction in relation to regulation of amoeboid behavior by the plasmodium of Physarum polycephalum. J. Theor. Biol. 179, 261–267 (1996)

    Article  Google Scholar 

  39. Nakagaki, T., Yamada, H., Toth, A.: Intelligence: Maze-solving by an amoeboid organism. Nature 407, 470 (2000)

    Article  Google Scholar 

  40. Nakagaki, T., Yamada, H., Ueda, T.: Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the Physarum plasmodium. Biophys. Chem. 82(1), 23–28 (1999)

    Article  Google Scholar 

  41. Nakagaki, T., Yamadaa, H., Ueda, T.: Interaction between cell shape and contraction pattern in the physarum plasmodium. Biophys. Chem. 84, 195–204 (2000)

    Article  Google Scholar 

  42. Parrish, J.K., Turchin, P.: Individual decisions, traffic rules, and emergent pattern in schooling fish. In: Animal Groups in Three Dimensions, pp. 126–142 (1997)

    Google Scholar 

  43. Rauprich, O., Matsushita, M., Weijer, C.J., Siegert, F., Esipov, S.E., Shapiro, J.A.: Periodic phenomena in Proteus mirabilis swarm colony development. J. Bacteriol. 178(22), 6525–6538 (1996)

    Google Scholar 

  44. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In: ACM SIGGRAPH Computer Graphics, vol. 21, pp. 25–34. ACM, New York (1987)

    Google Scholar 

  45. Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y.: Amoebae anticipate periodic events. Phys. Rev. Lett. 100(1) (2008)

    Google Scholar 

  46. Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. EMBO J. 22(8), 1771–1779 (2003)

    Article  Google Scholar 

  47. Shirakawa, T., Adamatzky, A., Gunji, Y.-P., Miyake, Y.: On simultaneous construction of Voronoi diagram and Delaunay triangulation by Physarum polycephalum. Int. J. Bifurc. Chaos 19(9), 3109–3117 (2009)

    Article  Google Scholar 

  48. Shirakawa, T., Gunji, Y.-P.: Computation of Voronoi diagram and collision-free path using the Plasmodium of Physarum polycephalum. Int. J. Unconv. Comput. 6(2), 79–88 (2010)

    Google Scholar 

  49. Shirakawa, T., Konagano, R., Inoue, K.: Novel taxis of the Physarum plasmodium and a taxis-based simulation of Physarum swarm. In: 2012 Joint 6th International Conference on Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS), pp. 296–300. IEEE, New York (2012)

    Google Scholar 

  50. Stephenson, S.L., Stempen, H., Hall, I.: Myxomycetes: A Handbook of Slime Molds. Timber Press Portland, Oregon (1994)

    Google Scholar 

  51. Sumpter, D.J.T.: Collective Animal Behavior. Princeton University Press, Princeton (2010)

    Google Scholar 

  52. Takagi, S., Ueda, T.: Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum. Physica D 237, 420–427 (2008)

    Article  Google Scholar 

  53. Takamatsu, A., Fujii, T.: Time delay effect in a living coupled oscillator system with the plasmodium of Physarum polycephalum. Phys. Rev. Lett. 85, 2026–2029 (2000)

    Article  Google Scholar 

  54. Takamatsu, A., Takaba, E., Takizawa, G.: Environment-dependent morphology in plasmodium of true slime mold Physarum polycephalum and a network growth model. J. Theor. Biol. 256(1), 29–44 (2009)

    Article  MathSciNet  Google Scholar 

  55. Tsuda, S., Aono, M., Gunji, Y.-P.: Robust and emergent Physarum logical-computing. BioSystems 73, 45–55 (2004)

    Article  Google Scholar 

  56. Tsuda, S., Jones, J.: The emergence of synchronization behavior in Physarum polycephalum and its particle approximation. Biosystems 103, 331–341 (2010)

    Article  Google Scholar 

  57. Tsuda, S., Jones, J., Adamatzky, A.: Towards Physarum engines. Appl. Bionics Biomech. 9(3), 221–240 (2012)

    Article  Google Scholar 

  58. Tsuda, S., Zauner, K.-P., Gunji, Y.-P.: Robot control with biological cells. BioSystems 87, 215–223 (2007)

    Article  Google Scholar 

  59. Ueda, T., Terayama, K., Kurihara, K., Kobatake, Y.: Threshold phenomena in chemoreception and taxis in slime mold Physarum polycephalum. J. Gen. Physiol. 65(2), 223–234 (1975). February

    Article  Google Scholar 

  60. Umedachi, T., Kitamura, T., Takeda, K., Nakagaki, T., Kobayashi, R., Ishiguro, A.: A modular robot driven by protoplasmic streaming. Distrib. Autonom. Robot. Syst. 8, 193–202 (2009)

    Google Scholar 

  61. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517, 71–140 (2012)

    Article  Google Scholar 

  62. Werner, B.T.: Eolian dunes: computer simulations and attractor interpretation. Geology 23(12), 1107–1110 (1995)

    Article  Google Scholar 

  63. Whiting, J.G.H., de Lacy Costello, B.P.J., Adamatzky, A.: Slime mould logic gates based on frequency changes of electrical potential oscillation. Biosystems 124, 21–25 (2014)

    Google Scholar 

  64. Whiting, J.G.H., de Lacy Costello, B.P.J., Adamatzky, A.: Towards slime mould chemical sensor: Mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum. Sens. Actuators B: Chem. 191, 844–853 (2014)

    Google Scholar 

  65. Wolf, R., Niemuth, J., Sauer, H.: Thermotaxis and protoplasmic oscillations in Physarum plasmodia analysed in a novel device generating stable linear temperature gradients. Protoplasma 197(1–2), 121–131 (1997)

    Article  Google Scholar 

  66. Wolke, A., Niemeyer, F., Achenbach, F.: Geotactic behavior of the acellular myxomycete Physarum polycephalum. Cell Biol. Int. Rep. 11(7), 525–528 (1987)

    Article  Google Scholar 

  67. Zheng, X., Zhong, T., Liu, M.: Modeling crowd evacuation of a building based on seven methodological approaches. Build. Environ. 44(3), 437–445 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the EU research project “Physarum Chip: Growing Computers from Slime Mould” (FP7 ICT Ref 316366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jones, J. (2017). On Hybrid Classical and Unconventional Computing for Guiding Collective Movement. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-33921-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33921-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33920-7

  • Online ISBN: 978-3-319-33921-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics