Skip to main content

Organic Memristor Based Elements for Bio-inspired Computing

  • Chapter
  • First Online:
Advances in Unconventional Computing

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 23))

Abstract

Bio-based/bio-inspired systems are attracting the interest of many studies even if we are far from reproducing the simplest living cell property. The concept of memory is particularly well suited for mimicking learning behavior in biosystems and in information processing systems being capable of coupling inherently memory and logic capabilities. Bio-electronics is another challenging platform, mostly if we consider organic devices based on conductive and biocompatible polymers. This chapter deals with several examples of devices developed by joining unconventional computing, organic memristors and living being. Starting from organic memristors we realized logic gates with memory and a single layer perceptron. We developed hybrid systems based on living beings as key elements for the proper device working, in particular with Phyarum polycephalum and neurons. These devices enable new and unexplored opportunities in such emerging field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://scienceblogs.com/developingintelligence/2007/03/27/why-the-brain-is-not-like-a-co/.

  2. 2.

    http://www.nist.gov/pml/div683/upload/bioelectronics_report.pdf.

References

  1. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Psychology Press, Abingdon (2005)

    Google Scholar 

  3. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  4. Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145–227 (2011)

    Article  Google Scholar 

  5. Sascha Vongehr, X.M.: The missing memristor has not been found. Sci. Rep. vol. 5(11657) (2015)

    Google Scholar 

  6. Erokhin, V., Berzina, T., Fontana, M.P.: Hybrid electronic device based on polyaniline-polyethyleneoxide junction. J. Appl. Phys. 97(6), 064501 (2005)

    Article  Google Scholar 

  7. Erokhin, V., Berzina, T., Fontana, M.: Polymeric elements for adaptive networks. Crystallogr. Rep. 52(1), 159–166 (2007)

    Article  Google Scholar 

  8. Smerieri, A., Berzina, T., Erokhin, V., Fontana, M.: A functional polymeric material based on hybrid electrochemically controlled junctions. Mater. Sci. Eng.: C 28(1), 18–22 (2008)

    Article  Google Scholar 

  9. Erokhin, V., Berzina, T., Camorani, P., Fontana, M.P.: Conducting polymer - solid electrolyte fibrillar composite material for adaptive networks. Soft Matter 2(10), 870–874 (2006)

    Article  Google Scholar 

  10. Erokhin, V., Berzina, T., Gorshkov, K., Camorani, P., Pucci, A., Ricci, L., Ruggeri, G., Sigala, R., Schüz, A.: Stochastic hybrid 3d matrix: learning and adaptation of electrical properties. J. Mater. Chem. 22(43), 22881–22887 (2012)

    Article  Google Scholar 

  11. Smerieri, A., Berzina, T., Erokhin, V., Fontana, M.: Polymeric electrochemical element for adaptive networks: pulse mode. J. Appl. Phys. 104(11), 114513 (2008)

    Article  Google Scholar 

  12. Erokhin, V., Berzina, T., Camorani, P., Smerieri, A., Vavoulis, D., Feng, J., Fontana, M.P.: Material memristive device circuits with synaptic plasticity: learning and memory. BioNanoScience 1(1–2), 24–30 (2011)

    Article  Google Scholar 

  13. Kang, E.T., Neoh, K.G., Tan, K.L.: Polyaniline: a polymer with many interesting intrinsic redox states. Prog. Polym. Sci. 23, 277–324 (1998)

    Article  Google Scholar 

  14. Erokhin, V., Fontana, M.: Thin film electrochemical memristive systems for bio-inspired computation. J. Comput. Theor. Nanosci. 8(3), 313–330 (2011)

    Article  Google Scholar 

  15. Berzina, T., Smerieri, A., Bernabò, M., Pucci, A., Ruggeri, G., Erokhin, V., Fontana, M.: Optimization of an organic memristor as an adaptive memory element. J. Appl. Phys. 105(12), 124515 (2009)

    Article  Google Scholar 

  16. Berzina, T., Smerieri, A., Ruggeri, G., Erokhin, V., Fontana, M., et al.: Role of the solid electrolyte composition on the performance of a polymeric memristor. Mater. Sci. Eng.: C 30(3), 407–411 (2010)

    Article  Google Scholar 

  17. Erokhin, V., Berzina, T., Camorani, P., Fontana, M.P.: On the stability of polymeric electrochemical elements for adaptive networks. Coll. Surf.: Physicochem. Eng. Asp. 321(1), 218–221 (2008)

    Article  Google Scholar 

  18. Berzina, T., Erokhin, V., Fontana, M.: Spectroscopic investigation of an electrochemically controlled conducting polymer-solid electrolyte junction. J. Appl. Phys. 101(2), 024501 (2007)

    Article  Google Scholar 

  19. Berzina, T., Erokhina, S., Camorani, P., Konovalov, O., Erokhin, V., Fontana, M.: Electrochemical control of the conductivity in an organic memristor: a time-resolved x-ray fluorescence study of ionic drift as a function of the applied voltage. ACS Appl. Mater. Interfaces 1(10), 2115–2118 (2009)

    Article  Google Scholar 

  20. Erokhin, V., Schüz, A., Fontana, M.P.: Organic memristor and bio-inspired information processing. Int. J. Unconv. Comput. 6(1), 15–32 (2010)

    Google Scholar 

  21. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  22. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  Google Scholar 

  23. Adhikari, S., Yang, C., Kim, H., Chua, L.: Memristor bridge synapse-based neural network and its learning. IEEE Trans. Neural Netw. Learn. Syst. 23(9), 1426–1435 (2012)

    Article  Google Scholar 

  24. Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., Prodromakis, T.: Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013)

    Article  Google Scholar 

  25. Seok Jeong, D., Kim, I., Ziegler, M., Kohlstedt, H.: Towards artificial neurons and synapses: a materials point of view. RSC Adv. 3, 3169–3183 (2013)

    Article  Google Scholar 

  26. Krzysteczko, P., Mönchenberger, J., Schöfers, M., Reiss, G., Thomas, A.: The memristive magnetic tunnel junction as a nanoscopic synapse-neuron system. Adv. Mater. 24(6), 762–766 (2012)

    Article  Google Scholar 

  27. Baldi, G., Battistoni, S., Attolini, G., Bosi, M., Collini, C., Iannotta, S., Lorenzelli, L., Mosca, R., Ponraj, J., Verucchi, R., et al.: Logic with memory: and gates made of organic and inorganic memristive devices. Semicond. Sci. Technol. 29(10), 104009–104014 (2014)

    Article  Google Scholar 

  28. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  MathSciNet  Google Scholar 

  29. Demin, V., Erokhin, V., Emelyanov, A., Battistoni, S., Baldi, G., Iannotta, S., Kashkarov, P., Kovalchuk, M.: Hardware elementary perceptron based on polyaniline memristive devices. Org. Electron. 25, 16–20 (2015)

    Article  Google Scholar 

  30. Horiguchi, H., Imagawa, K., Hoshino, T., Akiyama, Y., Morishima, K.: Fabrication and evaluation of reconstructed cardiac tissue and its application to bio-actuated microdevices. IEEE Trans. NanoBiosci. 8, 349–355 (2009)

    Article  Google Scholar 

  31. Akiyama, Y., Iwabuchi, K., Furukawa, Y., Morishima, K.: Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue. Lab Chip 9, 140–144 (2009)

    Article  Google Scholar 

  32. Povlich, L., Kim, D.H., Richardson-Burns, S.: In: Reichert, W.M. (ed.) Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment. Soft, fuzzy, and bioactive conducting polymers for improving the chronic performance of neural prosthetic devices. CRC Press, Boca Raton (2008)

    Google Scholar 

  33. Bonetti, S., Pistone, A., Brucale, M., Karges, S., Favaretto, L., Zambianchi, M., Posati, T., Sagnella, A., Caprini, M., Toffanin, S., Zamboni, R., Camaioni, N., Muccini, M., Melucci, M., Benfenati, V.: A lysinated thiophene-based semiconductor as a multifunctional neural bioorganic interface. Adv. Healthc. Mater. 4(8), 1190–1202 (2015)

    Article  Google Scholar 

  34. Benfenati, V., Toffanin, S., Bonetti, S., Turatti, G., Pistone, A., Chiappalone, M., Sagnella, A., Stefani, A., Generali, G., Ruani, G., et al.: A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat. Mater. 12(7), 672–680 (2013)

    Article  Google Scholar 

  35. Buchko, C.J., Slattery, M.J., Kozloff, K.M., Martin, D.C.: Mechanical properties of biocompatible protein polymer thin films. J. Mater. Res. 15, 231–242 (2000)

    Article  Google Scholar 

  36. Tarabella, G., D’Angelo, P., Cifarelli, A., Dimonte, A., Romeo, A., Berzina, T., Erokhin, V., Iannotta, S.: A hybrid living/organic electrochemical transistor based on the Physarum polycephalum cell endowed with both sensing and memristive properties. Chem. Sci. 6, 2859–2868 (2015)

    Article  Google Scholar 

  37. Bidez, P.R., Li, S., MacDiarmid, A.G., Venancio, E.C., Wei, Y., Lelkes, P.I.: Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J. Biomater. Sci. Polym. Edit. 17(1–2), 199–212 (2006)

    Article  Google Scholar 

  38. Ghasemi-Mobarakeh, L., Prabhakaran, M.P., Morshed, M., Nasr-Esfahani, M.H., Ramakrishna, S.: Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng. Part A 15(11), 3605–3619 (2009)

    Article  Google Scholar 

  39. Troitsky, V., Berzina, T., Fontana, M.: Langmuir–Blodgett assemblies with patterned conductive polyaniline layers. Mater. Sci. Eng.: C 22(2), 239–244 (2002)

    Article  Google Scholar 

  40. Juarez-Hernandez, L.J., Cornella, N., Pasquardini, L., Battistoni, S., Vidalino, L., Vanzetti, L., Caponi, S., Serra, M.D., Lannotta, S., Pederzolli, C., Macchi, P., Musio, C.: Bio-hybrid interfaces to study neuromorphic functionalities: new multidisciplinary evidences of cell viability on poly(anyline) (pani), a semiconductor polymer with memristive properties, Biophys. Chem. (2015)

    Google Scholar 

  41. DeFranco, J.A., Schmidt, B.S., Lipson, M., Malliaras, G.G.: Photolithographic patterning of organic electronic materials. Org. Electron. 7(1), 22–28 (2006)

    Article  Google Scholar 

  42. Ouyang, J., Xu, Q., Chu, C.-W., Yang, Y., Li, G., Shinar, J.: On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 45(25), 8443–8450 (2004)

    Article  Google Scholar 

  43. Stephenson, S.L., Stempen, H., Hall, I.: Myxomycetes: A Handbook of Slime Molds. Timber Press Portland, Oregon (1994)

    Google Scholar 

  44. Adamatzky, A.: Physarum Machines: Computers from Slime Mould, vol. 74. World Scientific, Singapore (2010)

    Google Scholar 

  45. Adamatzky, A., Jones, J.: Towards physarum robots: computing and manipulating on water surface. J. Bionic Eng. 5(4), 348–357 (2008)

    Article  Google Scholar 

  46. Adamatzky, A., Erokhin, V., Grube, M., Schubert, T., Schumann, A.: Physarum chip project: growing computers from slime mould. IJUC 8(4), 319–323 (2012)

    Google Scholar 

  47. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Adamatzky, A.: Bioevaluation of World Transport Networks. World Scientific, Singapore (2012)

    Book  Google Scholar 

  49. Adamatzky, A., Martínez, G.J., Chapa-Vergara, S.V., Asomoza-Palacio, R., Stephens, C.R.: Approximating mexican highways with slime mould. Nat. Comput. 10(3), 1195–1214 (2011)

    Article  MathSciNet  Google Scholar 

  50. Matsumoto, K., Ueda, T., Kobatake, Y.: Reversal of thermotaxis with oscillatory stimulation in the plasmodium of physarum polycephalum. J. Theor. Biol. 131(2), 175–182 (1988)

    Article  Google Scholar 

  51. Nakagaki, T., Yamada, H., Ueda, T.: Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the physarum plasmodium. Biophys. Chem. 82(1), 23–28 (1999)

    Article  Google Scholar 

  52. Yamada, H., Nakagaki, T., Baker, R.E., Maini, P.K.: Dispersion relation in oscillatory reaction-diffusion systems with self-consistent flow in true slime mold. J. Math. Biol. 54(6), 745–760 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Adamatzky, A.: Physarum machines: encapsulating reaction-diffusion to compute spanning tree. Naturwissenschaften 94(12), 975–980 (2007)

    Article  Google Scholar 

  54. Costello, B.D.L., Adamatzky, A.: Experimental implementation of collision-based gates in Belousov–Zhabotinsky medium. Chaos, Solitons Fractals 25(3), 535–544 (2005)

    Article  MATH  Google Scholar 

  55. Adamatzky, A., Teuscher, C.: From Utopian to Genuine Unconventional Computers. Luniver Press, Europe (2006)

    Google Scholar 

  56. Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 80(2), 021926 (2009)

    Article  Google Scholar 

  57. Lin, P., Yan, F., Yu, J., Chan, H.L., Yang, M.: The application of organic electrochemical transistors in cell-based biosensors. Adv. Mater. 22(33), 3655–3660 (2010)

    Article  Google Scholar 

  58. Khodagholy, D., Curto, V.F., Fraser, K.J., Gurfinkel, M., Byrne, R., Diamond, D., Malliaras, G.G., Benito-Lopez, F., Owens, R.M.: Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. J. Mater. Chem. 22(10), 4440–4443 (2012)

    Article  Google Scholar 

  59. Malliaras, G.G.: Organic bioelectronics: a new era for organic electronics. Biochimica et Biophysica Acta (BBA) - General Subject 1830(9), 4286–4287 (2013). Organic Bioelectronics - Novel Applications in Biomedicine

    Article  Google Scholar 

  60. Svennersten, K., Larsson, K.C., Berggren, M., Richter-Dahlfors, A.: Organic bioelectronics in nanomedicine. Biochimica et Biophysica Acta (BBA) - General Subjects 1810(3), 276–285 (2011). Nanotechnologies - Emerging Applications in Biomedicine

    Article  Google Scholar 

  61. Tarabella, G., Mahvash, F.M., Coppede, N., Barbero, F., Lannotta, S., Santato, C., Cicoira, F.: New opportunities for organic electronics and bioelectronics: ions in action. Chem. Sci. 4, 1395–1409 (2013)

    Google Scholar 

  62. Nilsson, D., Chen, M., Kugler, T., Remonen, T., Armgarth, M., Berggren, M.: Bi-stable and dynamic current modulation in electrochemical organic transistors. Adv. Mater. 14(1), 51–54 (2002)

    Article  Google Scholar 

  63. Cicoira, F., Sessolo, M., Yaghmazadeh, O., DeFranco, J.A., Yang, S.Y., Malliaras, G.G.: Influence of device geometry on sensor characteristics of planar organic electrochemical transistors. Adv. Mater. 22(9), 1012–1016 (2010)

    Article  Google Scholar 

  64. Kamiya, N., Kuroda, K.: Studies on the velocity distribution of the protoplasmic streaming in the myxomycete plasmodium. Protoplasma 49(1), 1–4 (1958)

    Article  Google Scholar 

  65. Larsson, O., Laiho, A., Schmickler, W., Berggren, M., Crispin, X.: Controlling the dimensionality of charge transport in an organic electrochemical transistor by capacitive coupling. Adv. Mater. 23(41), 4764–4769 (2011)

    Article  Google Scholar 

  66. Tarabella, G., Pezzella, A., Romeo, A., D’Angelo, P., Coppede, N., Calicchio, M., d’Ischia, M., Mosca, R., Iannotta, S.: Irreversible evolution of eumelanin redox states detected by an organic electrochemical transistor: en route to bioelectronics and biosensing. J. Mater. Chem. B 1, 3843–3849 (2013)

    Article  Google Scholar 

  67. Romeo, A., Dimonte, A., Tarabella, G., D’Angelo, P., Erokhin, V., Lannotta, S.: A bio-inspired memory device based on interfacing physarum polycephalum with an organic semiconductor, APL Mater. 3(1) (2015)

    Google Scholar 

  68. Erokhin, V., Berzina, T., Smerieri, A., Camorani, P., Erokhina, S., Fontana, M.: Bio-inspired adaptive networks based on organic memristors. Nano Commun. Netw. 1(2), 108–117 (2010)

    Article  Google Scholar 

  69. Möller, S., Perlov, C., Jackson, W., Taussig, C., Forrest, S.R.: A polymer/semiconductor write-once read-many-times memory. Nature 426(6963), 166–169 (2003)

    Article  Google Scholar 

  70. Tang, H., Zhu, L., Harima, Y., Yamashita, K.: Chronocoulometric determination of doping levels of polythiophenes: influences of overoxidation and capacitive processes. Synth. Metals 110(2), 105–113 (2000)

    Article  Google Scholar 

  71. Kim, J.-S., Ho, P., Murphy, C., Baynes, N., Friend, R.: Nature of non-emissive black spots in polymer light-emitting diodes by in-situ micro-Raman spectroscopy. Adv. Mater. 14(3), 206–209 (2002)

    Article  Google Scholar 

  72. Tehrani, P., Kanciurzewska, A., Crispin, X., Robinson, N.D., Fahlman, M., Berggren, M.: The effect of ph on the electrochemical over-oxidation in pedot:pss films. Solid State Ion. 177(39–40), 3521–3527 (2007)

    Article  Google Scholar 

  73. Isaksson, J., Kjäll, P., Nilsson, D., Robinson, N., Berggren, M., Richter-Dahlfors, A.: Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat. Mater. 6(9), 673–679 (2007)

    Article  Google Scholar 

  74. Ridgway, E., Durham, A.: Oscillations of calcium ion concentrations in physarum polycephalum. J. Cell Biol. 69(1), 223–226 (1976)

    Article  Google Scholar 

  75. Heremans, P., Gelinck, G.H., Muller, R., Baeg, K.-J., Kim, D.-Y., Noh, Y.-Y.: Polymer and organic nonvolatile memory devices. Chem. Mater. 23(3), 341–358 (2010)

    Article  Google Scholar 

  76. Bernards, D.A., Malliaras, G.G.: Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 17(17), 3538–3544 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Battistoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Battistoni, S., Dimonte, A., Erokhin, V. (2017). Organic Memristor Based Elements for Bio-inspired Computing. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-33921-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33921-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33920-7

  • Online ISBN: 978-3-319-33921-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics