Skip to main content

Soliton-Guided Quantum Information Processing

  • Chapter
  • First Online:
Advances in Unconventional Computing

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 23))

Abstract

We describe applications of solitons and soliton collisions to the transport, transfer, and beam-splitting of qubits carried by optical photons. The transport and transfer realize the “flying qubits” necessary for quantum information processing, and the beam-splitting leads, in theory, to an implementation of quantum computing using linear optics. These proposed applications are embedded in a uniform optical fiber and require no special device fabrication, no cooling, and no vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A400, 97–117 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Steiglitz, K., Rand, D.: Photon trapping and transfer with solitons. Phys. Rev. A 79, 021802(R) (2009)

    Article  Google Scholar 

  4. Steiglitz, K.: Soliton-guided phase shifter and beam splitter. Phys. Rev. A 81, 033835 (2010)

    Article  Google Scholar 

  5. Steiglitz, K.: Making beam splitters with dark soliton collisions. Phys. Rev. A 82, 043831 (2010)

    Article  Google Scholar 

  6. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical physics in dispersive dielectric fibers I: anomalous dispersion. Appl. Phys. Lett. 23(3), 142–144 (1973)

    Article  Google Scholar 

  7. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, (1980)

    Google Scholar 

  8. Manassah, J.T.: Ultrafast solitary waves sustained through induced phase modulation by a copropagating pump. Op. Lett. 15(12), 670–672 (1990)

    Article  Google Scholar 

  9. Messiah, A.: Quantum Mechanics, 1st edn. North-Holland, Amsterdam (1961)

    MATH  Google Scholar 

  10. Schiff, L.I.: Quantum Mechanics, 3rd edn. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  11. Akhmediev, N., Ankiewicz, A.: Spatial soliton X-junctions and couplers. Op. Commun. 100, 186–192 (1993)

    Article  MATH  Google Scholar 

  12. Lan, S., DelRe, E., Chen, Z., Shih, M.-F., Segev, M.: Directional coupler with soliton-induced waveguides. Op. Lett. 24, 475–477 (1999)

    Article  Google Scholar 

  13. Guo, A., Henry, M., Salamo, G.J., Segev, M., Wood, G.L.: Fixing multiple waveguides induced by photorefractive solitons: directional couplers and beam splitters. Op. Lett. 26, 1274–1276 (2001)

    Article  Google Scholar 

  14. DiVincenzo, D.P.: The physical implementation of quantum computation. Fort. der Phys. 48, 771–783 (2000). http://arxiv.org/pdf/quant-ph/0002077v3.pdf

  15. Knill, E., Laflamme, R., Milburn, G.: A scheme for efficient quantum computation with linear optics. Nature 409(46), 46–52 (2001)

    Article  MATH  Google Scholar 

  16. Marinescu, D.C., Marinescu, G.M.: Classical and quantum information. Academic Press, New York (2012)

    MATH  Google Scholar 

  17. Miller, P.D.: Zero-crosstalk junctions made from dark solitons. Phys. Rev. E 53(4), 4137–4142 (1996)

    Article  Google Scholar 

  18. Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, London (2006)

    MATH  Google Scholar 

  19. Luther-Davies, B., Xiaoping, Y.: Waveguides and Y junctions formed in bulk media by using dark spatial solitons. Op. Lett. 17(7), 496–498 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

I owe a special debt of gratitude to Darren Rand, coauthor of [3], the springboard for this line of work. He shares any credit for this work, but not any blame. I’ve benefited also from discussions with Sanjeev Arora, Andrew Houck, Steve Lyon, and Herschel Rabitz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Steiglitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Steiglitz, K. (2017). Soliton-Guided Quantum Information Processing. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-33921-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33921-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33920-7

  • Online ISBN: 978-3-319-33921-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics