Skip to main content

Chemotaxis and Chemokinesis of Living and Non-living Objects

  • Chapter
  • First Online:
Advances in Unconventional Computing

Abstract

One of the fundamental properties of living organisms is the ability to sense and respond to changes in their environment by movement. If a motile cell senses soluble molecules and follows along a concentration gradient to the source, or if it moves away from a source of undesirable chemicals, e.g. repellent, toxin, it is displaying a directional movement called positive or negative chemotaxis, respectively. This phenomenon is well-known to biologists and intensively studied in living systems. In contrast chemokinesis is a change in movement due to environmental input but the resulting movement is non-vectorial and can be considered directionally random. Recently, in the last ten years, few laboratories started to focus on the movement properties of artificial constructs, including the directional movement of non-living objects in chemical gradients. This chapter will focus on chemotaxis and chemokinesis of natural and synthetic systems that may provide chemical platforms for unconventional computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abecassis, B., Cottin-Bizonne, C., Ybert, C., Ajdari, A., Bocquet, L.: Boosting migration of large particles by solute contrasts. Nature Mater. 7, 785–789 (2008)

    Article  Google Scholar 

  2. Adamatzky, A.: Physarum Machines: Computers from Slime Mould. Series on Nonlinear Science Series A, vol. 74. World Scientific, Singapore (2010)

    Google Scholar 

  3. Adamatzky, A.: Routing Physarum with repellents. Eur. Phys. J. 31, 403–410 (2010)

    Google Scholar 

  4. Adamatzky, A.: Slime mold solves maze in one pass, assisted by gradient of chemo-attractants. IEEE Trans. NanoBioscience 11(2), 131–134 (2012)

    Article  Google Scholar 

  5. Adler, J., Shi, W.: Galvanotaxis in a bacteria. Cold Spring Harbor Symp. Quant. Biol. 53, 23–25 (1988)

    Article  Google Scholar 

  6. Aldrich, H.: Cell Biology of Physarum and Didymium V1: Organisms, Nucleus, and Cell Cycle. Elsevier Science, Amsterdam (2012)

    Google Scholar 

  7. Anderson, J.L., Prieve, D.C.: Diffusiophoresis: migration of colloidal particles in gradients of solute concentration. Sep. Purif. Methods 13, 67–103 (1984)

    Article  Google Scholar 

  8. Ban, T., Yamagami, T., Nakata, H., Okano, Y.: pH-Dependent motion of self-propelled droplets due to marangoni effect at neutral pH. Langmuir 29, 2554–2561 (2013)

    Article  Google Scholar 

  9. Baraban, L., Harazim, S.M., Sanchez, S., Schmidt, O.G.: Chemotactic behavior of catalytic motors in microfluidic channels. Angewandte Chemie International Edition 52, 5552–5556 (2013)

    Article  Google Scholar 

  10. Behar, T.N., Li, Y.X., Tran, H.T., Ma, W., Dunlap, V., Scott, C., Barker, J.L.: GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J. Neurosci. 16(5), 1808–1818 (1996)

    Google Scholar 

  11. Bennett, R.R., Golestanian, R.: A steering mechanism for phototaxis in chlamydomonas. J. R. Soc. Interface 12, (2015)

    Google Scholar 

  12. Berg, H.C.: Random Walks in Biology. Princeton University Press, Princeton (1993)

    Google Scholar 

  13. Boyden, S.: The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453–466 (1962)

    Article  Google Scholar 

  14. Carlile, M.J.: Nutrition and chemotaxis in the myxomycete Physarum polycephalum: the effect of carbohydrates on the plasmodium. J. Gen. Microbiol. 63, 221–226 (1970)

    Article  Google Scholar 

  15. Carter, S.B.: Haptotaxis and the mechanism of cell motility. Nature 213, 256–260 (1967)

    Article  Google Scholar 

  16. Čejková, J., Novák, M., Štěpánek, F., Hanczyc, M.M.: Dynamics of chemotactic droplets in salt concentration gradients. Langmuir 30, 11937–11944 (2014)

    Article  Google Scholar 

  17. Chaturvedi, N., Hong, Y., Sen, A., Velegol, D.: Magnetic enhancement of phototaxing catalytic motors. Langmuir 26, 6308–6313 (2010)

    Article  Google Scholar 

  18. Chet, I., Naveh, A., Henis, Y.: Chemotaxis of Physarum polycephalum towards carbohydrates, amino acids and nucleotides. J. Gen. Microbiol. 102, 145–148 (1977)

    Article  Google Scholar 

  19. Collin, M., Schuch, R.: Bacterial Sensing and Signaling. Karger, Switzerland (2009)

    Google Scholar 

  20. de Lacy Costello, B.P.J., Adamatzky, A.I.: Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals. Commun. Integr. Biol. 6, (2013)

    Google Scholar 

  21. Dey, K.K., Bhandari, S., Bandyopadhyay, D., Basu, S., Chattopadhyay, A.: The pH taxis of an intelligent catalytic microbot. Small (2013)

    Google Scholar 

  22. Dos Santos, F.D., Ondarcuhu, T.: Free-running droplets. Phys. Rev. Lett. 75, 2972–2975 (1995)

    Article  Google Scholar 

  23. Dreyfus, R., Baudry, J., Roper, M.L., Fermigier, M., Stone, H.A., Bibette, J.: Microscopic artificial swimmers. Nature 437, 862–865 (2005)

    Article  MATH  Google Scholar 

  24. Eisenbach, M.: Sperm chemotaxis. Rev. Reprod. 4, 56–66 (1999)

    Article  Google Scholar 

  25. Eisenbach, M.: Chemotaxis, vol. 499. Imperial College Press, London (2004)

    Google Scholar 

  26. Entschladen, F., Zänker, K.S.: Cell Migration: Signalling and Mechanisms. Karger, Switzerland (2009)

    Google Scholar 

  27. Fournier-Bidoz, S., Arsenault, A.C., Manners, I., Ozin, G.A.: Synthetic self-propelled nanorotors. Chem. Commun., 441–443 (2005)

    Google Scholar 

  28. Fox, R.B., Hoidal, J.R., Brown, D.M., Repine, J.E.: Pulmonary inflammation due to oxygen toxicity: involvement of chemotactic factors and polymorphonuclear leukocytes. Am. Rev. Respir. Dis. 123, 521 (1981)

    Google Scholar 

  29. Francis, W., Fay, C., Florea, L., Diamond, D.: Self-propelled chemotactic ionic liquid droplets. Chem. Commun. 51, 2342–2344 (2015)

    Article  Google Scholar 

  30. Genzer, J., Bhat, R.R.: Surface-bound soft matter gradients. Langmuir 24, 2294–2317 (2008)

    Article  Google Scholar 

  31. Grebe, T.W., Stock, J.: Bacterial chemotaxis: the five sensors of a bacterium. Curr. Biol. 8 (1998)

    Google Scholar 

  32. Guan, J.L.: Cell migration: developmental methods and protocols. Methods in Molecular Biology. Humana, New York (2004)

    Google Scholar 

  33. Hanczyc, M.M., Ikegami, T.: Protocells as smart agents for architectural design. Technoetic Arts J. 7(2), 117–120 (2009)

    Article  Google Scholar 

  34. Hanczyc, M.M., Toyota, T., Ikegami, T., Packard, N., Sugawara, T.: Fatty acid chemistry at the oil-water interface: self-propelled oil droplets. J. Am. Chem. Soc. 129, 9386–9391 (2007)

    Article  Google Scholar 

  35. Hiroki, M., Hanczyc, M.M., Ikegami, T.: Self-maintained movements of droplets with convection flow. Progress in Artificial Life. Springer, Berlin (2007)

    Google Scholar 

  36. Horibe, N., Hanczyc, M.M., Ikegami, T.: Mode switching and collective behavior in chemical oil droplets. Entropy 13, 709–719 (2011)

    Article  Google Scholar 

  37. Howse, J.R. et al. Self-motile colloidal particles: From directed propulsion to random walk. Phys. Rev. Lett. 99 (2007)

    Google Scholar 

  38. Jeon, K.W.: International Review of Cytology: A Survey of Cell Biology. Elsevier Science, Amsterdam (2007)

    Google Scholar 

  39. Jin, T., Hereld, D.: Chemotaxis: Methods and Protocols. Humana Press, New York (2009)

    Google Scholar 

  40. Ke, H., Ye, S., Carroll, R.L., Showalter, K.: Motion analysis of self-propelled Pt-Silica particles in hydrogen peroxide solutions. J. Phys. Chem. A 114, 5462–5467 (2010)

    Article  Google Scholar 

  41. Keenan, T.M., Folch, A.: Biomolecular gradients in cell culture systems. Lab Chip 8, 34–57 (2008)

    Article  Google Scholar 

  42. Kerrigan, C.: The 200 Year Continuum. Leonardo, Massachusetts Institute of Technology Press, 42(4), 314–323 (2009)

    Google Scholar 

  43. Kessin, R.H.: Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  44. Knowles, D.J.C., Carlile, M.J.: The chemotactic response of plasmodia of the myxomycete physarum polycephalum to sugars and related compounds. J. Gen. Microbiol. 108, 17–25 (1978)

    Article  Google Scholar 

  45. Lagzi, I.: Chemical robotics-chemotactic drug carriers. Cent. Eur. J. Med., 1–6 (2013)

    Google Scholar 

  46. Lagzi, I., Soh, S., Wesson, P.J., Browne, K.P., Grzybowski, B.A.: Maze solving by chemotactic droplets. J. Am. Chem. Soc. 132, 1198–1199 (2010)

    Article  Google Scholar 

  47. Liu, Z., Klominek, J.: Chemotaxis and chemokinesis of malignant mesothelioma cells to multiple growth factors. Anticancer Res. 24, 1625–1630 (2004)

    Google Scholar 

  48. Martin, P.: Wound healing-aiming for perfect skin regeneration. Science 276, 75–81 (1997)

    Article  Google Scholar 

  49. Meyers, L.A., Bull, J.J.: Fighting change with change: adaptive variation in an uncertain world. Trends Ecol. Evol. 17, 551–557 (2002)

    Article  Google Scholar 

  50. Mori, I., Ohshima, Y.: Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376, 344–348 (1995)

    Article  Google Scholar 

  51. Mortimer, D., Fothergill, T., Pujic, Z., Richards, LJ., Goodhill, GJ.: Growth cone chemotaxis. Trends Neurosci. 31, 90–98 (2008)

    Google Scholar 

  52. Nagai, K., Sumino, Y., Kitahata, H., Yoshikawa, K. Mode selection in the spontaneous motion of an alcohol droplet. Phys. Rev. 71 (2005)

    Google Scholar 

  53. Nagai, K.H., Takabatake, F., Ichikawa, M., Sumino, Y., Kitahata, H., Yoshinaga N.: Rotational motion of a droplet induced by interfacial tension. Phys. Rev. 87 (2013)

    Google Scholar 

  54. Nakagaki, T., Yamada, H., Toth, A.: Intelligence: maze-solving by an amoeboid organism. Nature 407, 470–470 (2000)

    Article  Google Scholar 

  55. Paxton, W.F., Kistler, K.C., Olmeda, C.C., Sen, A., St Angelo, S.K., Cao, Y., Mallouk, T.E., Lammert, P.E., Crespi, V.H.: Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004)

    Article  Google Scholar 

  56. Petrie, R.J., Doyle, A.D., Yamada, K.M.: Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell Biol. 10, 538–549 (2009)

    Article  Google Scholar 

  57. Peyer, K.E., Zhang, L., Nelson, B.J.: Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5, 1259–1272 (2013)

    Article  Google Scholar 

  58. Polyakova, T., Zablotskii, V.: Magnetization processes in magnetotactic bacteria systems. J. Magn. Magn. Mater. 293, 365–370 (2005)

    Article  Google Scholar 

  59. Roberts, A.M.: Mechanisms of gravitaxis in chlamydomonas. Biol. Bull. 210, 78–80 (2006)

    Article  Google Scholar 

  60. Roussos, E.T., Condeelis, J.S., Patsialou, A.: Chemotaxis in cancer. Nat. Rev. Cancer 11, 573–587 (2011)

    Article  Google Scholar 

  61. Ševčíková, H., Čejková, J., Krausová, L., Přibyl, M., Štěpánek, F., Marek, M.: A new traveling wave phenomenon of Dictyostelium in the presence of cAMP. Phys. D: Nonlinear Phenom. 239, 879–888 (2010)

    Article  Google Scholar 

  62. Song, L., Nadkarnia, S.M., Boedeker, H.U., Beta, C., Bae, A., Francka, C., Rappele, W.J., Loomisf, W.F., Bodenschatz, E.: Dictyostelium discoideum chemotaxis: threshold for directed motion. Eur. J. Cell Biol. 85, 981–989 (2006)

    Article  Google Scholar 

  63. Sumino, Y., Magome, N., Hamada, T., Yoshikawa, K.: Self-running droplet: emergence of regular motion from non equilibrium noise. Phys. Rev. Lett. 94 (2005)

    Google Scholar 

  64. Sundararajan, S., Lammert, P.E., Zudans, A.W., Crespi, V.H., Sen, A.: Catalytic motors for transport of colloidal cargo. Nano Lett. 8, 1271–1276 (2008)

    Article  Google Scholar 

  65. Takabatake, F., Magome, N., Ichikawa, M., Yoshikawa, K.: Spontaneous mode-selection in the self-propelled motion of a solid/liquid composite driven by interfacial instability. J. Chem. Phys. 134 (2011)

    Google Scholar 

  66. Tanaka, S., Sogabe, Y., Nakata, S.: Spontaneous change in trajectory patterns of a self-propelled oil droplet at the air-surfactant solution interface. Phys. Rev. 91 (2015)

    Google Scholar 

  67. Tomlinson, C.: On the motions of camphor on the surface of water. Proc. R. Soc. Lond. 11, 575–577 (1860)

    Article  Google Scholar 

  68. Toyota, T., Maru, N., Hanczyc, M.M., Ikegami, T., Sugawara, T.: Self-propelled oil droplets consuming “fuel” surfactant. J. Am. Chem. Soc. 131, 5012–5013 (2009)

    Article  Google Scholar 

  69. Walker, G.M., Sai, J., Richmond, A., Stremler, M., Chung, C.Y., Wikswo, J.P.: Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5, 611–618 (2005)

    Article  Google Scholar 

  70. Wang, F., Herzmark, P., Weiner, O.D., Srinivasan, S., Servant, G., Bourne, H.R.: Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat. Cell Biol. 4, 513–518 (2002)

    Article  Google Scholar 

  71. Wu, D.: Signaling mechanisms for regulation of chemotaxis. Cell Res. 15, 52–56 (2005)

    Article  Google Scholar 

  72. Yamamoto, D., Shioi, A.: Self-propelled nano/micromotors with a chemical reaction: underlying physics and strategies of motion control. KONA Powder Part. J. 32, 2–22 (2015)

    Article  Google Scholar 

  73. Zhao, G., Pumera, M.: Macroscopic self-propelled objects. Chem.- Asian J. 7, 1994–2002 (2012)

    Article  Google Scholar 

  74. Zicha, D., Dunn, G.A., Brown, A.F.: A new direct-viewing chemotaxis chamber. J. Cell Sci. 99, 769–775 (1991)

    Google Scholar 

  75. Zigmond, S.H.: Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75, 606–616 (1977)

    Article  Google Scholar 

  76. https://vimeo.com/36049652

  77. https://vimeo.com/47461384

  78. http://youtu.be/l3aAjdjQ0m0

  79. Hong, Y., Blackman, N.M.K., Kopp, N.D., Sen, A., Velegol, D.: Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99 (2007)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission FP7 Future and Emerging Technologies Proactive: 318671 (MICREAgents) and 611640 (EVOBLISS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitka Čejková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Čejková, J., Holler, S., Nguyenová, T.Q., Kerrigan, C., Štěpánek, F., Hanczyc, M.M. (2017). Chemotaxis and Chemokinesis of Living and Non-living Objects. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-33921-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33921-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33920-7

  • Online ISBN: 978-3-319-33921-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics