Skip to main content

Parasitic and Protozoal Infections

  • Chapter
  • First Online:
Dermatology in Public Health Environments

Abstract

This chapter addresses the major parasitic and protozoal diseases with dermatologic effects, particularly in relation to epidemiologic, clinical, and therapeutic aspects. Public health in various regions of the world is affected by arthropod infections, insect infections, hemiptera infections, dipterous larvae infestations, helminthic infections, and protozoal infections. Some of these diseases are considered “neglected,” and a major effort should be made by government authorities, health institutions, and health professionals to better control their incidence and prevalence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. World Health Organization. Programmes. Lymphatic filariasis. Available at: www.who.int/lymphatic_filariasis/epidemiology/scabies. Accessed 9 Mar 2016.

  2. Romani L, Steer AC, Whitfeld M, Kaldor JM. Prevalence os scabies and impetigo worldwide: a systematic review. Lancet. 2015;15(8):960–7.

    Article  Google Scholar 

  3. Centers for Disease Control. Scabies. Available at: http://www.cdc.gov/parasites/scabies/. Accessed 9 Mar 2016.

  4. Walton SF, Pizzutto S, Slender A, Viberg L, Holt D, Hales BJ, Kemp DJ, Currie BJ, Rolland JM, O’Hehir R. Increased allergic immune response to Sarcoptes scabiei antigens in crusted versus ordinary scabies. Clin Vaccine Immunol. 2010;17(9):1428–38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Hay RJ, Steer AC, Engelman D, Walton S. Scabies in the developing world – its prevalence, complications and management. Clin Microbiol Infect. 2012;18(4):313–23.

    Article  CAS  PubMed  Google Scholar 

  6. Gunning K, Pippitt K, Kiraly B, Sayler M. Pediculosis and scabies: a treatment update. Am Fam Physician. 2012;86(6):535–41.

    PubMed  Google Scholar 

  7. Shmidt E, Levitt J. Dermatologic infestations. Int J Dermatol. 2012;51:131–41.

    Article  CAS  PubMed  Google Scholar 

  8. Tschandl P, Argenziano G, Bakos R, Gourhant JY, Hofmann-Wellenhof R, Kittler H, Rosendahl C, Minas S, Zalaudek I. Dermoscopy and entomology (entomodermoscopy). J Dtsch Dermatol Ges. 2009;7(7):589–96.

    PubMed  Google Scholar 

  9. Golant AK, Levitt JO. Scabies: a review of diagnosis and management based on mite biology. Pediatr Rev. 2012;33(1):48–59.

    Article  Google Scholar 

  10. Kristjansson AK, Smith MK, Gould JW, Gilliam AC. Pink pigtails are a clue for the diagnosis of scabies. J Am Acad Dermatol. 2007;57(1):174–5.

    Article  PubMed  Google Scholar 

  11. Walton SF, Currie BJ. Problems in diagnosing scabies, a global disease in human and animal populations. Clin Microbiol Rev. 2007;20(2):268–79.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gach JE, Heagerty A. Crusted scabies looking like psoriasis. Lancet. 2000;356:650.

    Article  CAS  PubMed  Google Scholar 

  13. Strong M, Johnstone PW. Interventions for treating scabies (update). Cochrane Database Syst Rev 2010:CD000320.

    Google Scholar 

  14. Hwang SM, Yoo MS, Ahn SK, Choi EH. Wonju. Demodecidosis manifested on the external genitalia. Int J Dermat. 1998;37(8):634–5.

    CAS  PubMed  Google Scholar 

  15. Akilov OE, Butov YS, Mumcuoglu KY. A clinico-pathological approach to the classification of human demodicosis. J Dtsch Dermatol Ges. 2005;3(8):607–14.

    Article  PubMed  Google Scholar 

  16. Chen W, Plewig G. Human demodicosis: revisit and a proposed classification. Br J Dermatol. 2014;170(6):1219–25.

    Article  CAS  PubMed  Google Scholar 

  17. Hsu CK, Zink A, Wei KJ, Dzika E, Plewig G, Chen W. Primary human demodicosis. A disease sui generis. Hautarzt. 2015;66(3):189–94.

    Article  PubMed  Google Scholar 

  18. Forton F, Seys B. Density of Demodex folliculorum in rosacea: a case-control study using standardized skin-surface biopsy. Br J Dermatol. 1993;128(6):650–9.

    Article  CAS  PubMed  Google Scholar 

  19. Liang L, Ding X, Tseng SC. High prevalence of Demodex brevis infestation in chalazia. Am J Ophthalmol. 2014;157(2):342–8.

    Article  PubMed  Google Scholar 

  20. Forton F, Seys B, Marchal JL, Song M. Demodex folliculorum and topical treatment: acaricidal action evaluated by standardized skin surface biopsy. Br J Dermatol. 1998;138(3):461–6.

    Article  CAS  PubMed  Google Scholar 

  21. Clyti E, Nacher M, Sainte-Marie D, Pradinaud R, Couppie P. Ivermectin treatment of three cases of demodecidosis during human immunodeficiency virus infection. Int J Dermatol. 2006;45(9):1066–8.

    Article  PubMed  Google Scholar 

  22. Chosidow O. Scabies and pediculosis. Lancet. 2000;355:819–26.

    Article  CAS  PubMed  Google Scholar 

  23. Devore CD, Schutze GE. Head lice. Pediatrics. 2015;135(5):1356–65. 25.

    Google Scholar 

  24. Kalil CLPV, Webber A. Zoodermatoses. In: Fundamentos de Dermatologia. Rio de Janeiro: Ed. Atheneu; 2009.

    Google Scholar 

  25. Ko CJ, Elston DM. Pediculosis. J Am Acad Dermatol. 2004;50(1):1–12.

    Article  PubMed  Google Scholar 

  26. Parisier DM, Meinking TL, Bell M, Ryan WG. Topical 0.5% ivermectin lotion for treatment of head lice. N Engl J Med. 2012;367(18):1687–93.

    Article  CAS  Google Scholar 

  27. Durand R, Bouvresse S, Berdjane Z, Izri A, Chosidow O, Clark JM. Insecticide resistance in head lice: clinical, parasitological and genetic aspects. Clin Microbiol Infect. 2012;18(4):338–44.

    Article  CAS  PubMed  Google Scholar 

  28. Idriss S, Levitt J. Malathion for head lice and scabies: treatment and safety considerations. J Drugs Dermatol. 2009;8(8):715–20.

    PubMed  Google Scholar 

  29. Deeks LS, Naunton M, Currie MJ, Bowden FJ. Topical ivermectin 0,5% lotion for treatment of head lice. Ann Pharmacother. 2013;47(9):1161–7.

    Article  CAS  PubMed  Google Scholar 

  30. Villegas SC. Spinosad for the treatment of head lice infestations. Drugs Today (Barc). 2012;48(9):595–9.

    CAS  Google Scholar 

  31. Chosidow O. Scabies and pediculosis. Lancet. 2000;355:819–26.

    Article  CAS  PubMed  Google Scholar 

  32. Centers for Disease Control. Parasites. Lice. Body lice. Available at: http://www.cdc.gov/parasites/lice/body. Accessed 6 Mar 2016.

  33. Ko CJ, Elston DM. Pediculosis. J Am Acad Dermatol. 2004;50(1):1–12.

    Article  PubMed  Google Scholar 

  34. Gunninig K, Pippitt K, Kiraly B, Sayler M. Pediculosis and scabies: a treatment update. Am Fam Physician. 2012;86(6):535–41.

    Google Scholar 

  35. World Health Organization. Chagas disease (American trypanosomiasis). Available at: http://www.who.int/mediacentre/factsheets/fs340/en/. Accessed 21 Mar 2016.

  36. Kapoor R, Elston DM. What’s eating you? Triatome Reduviidis Cutis. 2011;87(3):114–5.

    PubMed  Google Scholar 

  37. Klotz JH, Dorn PL, Logan JL, Stevens L, Pinnas JL, Schmidt JO, Klotz SA. “Kissing bugs”: potential disease vectors and cause of anaphylaxis. Clin Infect Dis. 2010;50(12):1629–34.

    Article  PubMed  Google Scholar 

  38. Centers for Disease Control. Parasites. American trypanosomiasis (also known as Chagas Disease). Available at: http://www.cdc.gov/parasites/chagas/gen_info/vectors/index.html. Accessed 21 Mar 2016.

  39. Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet. 2010;375(9723):1388–402.

    Article  PubMed  Google Scholar 

  40. Thomas I, Kihiczak GG, Schwartz RA. Bedbug bites: a review. Int J Dermatol. 2004;43:430–3.

    Article  PubMed  Google Scholar 

  41. Centers for Disease Control. Parasites. Bed bugs. Available at: http://www.cdc.gov/parasites/bedbugs. Accessed 7 Mar 2016.

  42. Shmidt E, Levitt J. Dermatologic infestations. Int J Dermatol. 2012;51:131–41.

    Article  CAS  PubMed  Google Scholar 

  43. Goddard J, de Shazo R. Bed bugs (Cimex lectularius) and clinical consequences of their bites. JAMA. 2009;301(13):1358–66.

    Article  CAS  PubMed  Google Scholar 

  44. Magnarelli LA, Andreadis TG. Human cases of furuncular, traumatic, and nasal myiasis in Connecticut. Am J Trop Med Hyg. 1981;30:894–6.

    Article  CAS  PubMed  Google Scholar 

  45. Maier H, Hönigsmann H. Furuncular myiasis caused by Dermatobia hominis, the human botfly. J Am Acad Dermatol. 2004;50:S26–30.

    Article  PubMed  Google Scholar 

  46. Robbins K, Khachemoune A. Cutaneous myiasis: a review of the common types of myiasis. Int J Dermatol. 2010;49(10):1092–8.

    Article  PubMed  Google Scholar 

  47. Geary MJ, Hudson BJ, Russell RC, Hardy A. Exotic myiasis with Lund’s fly (Cordylobia rodhaini). Med J Aust. 1999;171:654–5.

    CAS  PubMed  Google Scholar 

  48. Safdar N, Young DK, Andes D. Autochthonous furuncular myiasis in the United States: case report and literature review. Clin Infect Dis. 2003;36(7):e73–80.

    Article  PubMed  Google Scholar 

  49. Davis RF, Johnston GA, Sladden MJ. Recognition and management of common ectoparasitic diseases in travelers. Am J Clin Dermatol. 2009;10(1):1–8.

    Article  PubMed  Google Scholar 

  50. Sherman RA. Wound myiasis in urban and suburban United States. Arch Intern Med. 2000;160:2004–14.

    Article  CAS  PubMed  Google Scholar 

  51. Centers for Disease Control. Parasites. Zoonotic hookworm. Available at: http://www.cdc.gov/parasites/zoonotichookworm. Accessed 15 Mar 2016.

  52. Heukelbach J, Feldmeier H. Epidemiological and clinical characteristics of hookworm-related cutaneous larva migrans. Lancet Infect Dis. 2008;8(5):302–9.

    Article  PubMed  Google Scholar 

  53. Feldmeier H, Schuster A. Mini-review: hookworm-related cutaneous larva migrans. Eur J Clin Microbiol Infect Dis. 2012;31(6):915–8.

    Article  CAS  PubMed  Google Scholar 

  54. Veraldi S, Arancio L. Giant bullous cutaneous larva migrans. Clin Exp Dermatol. 2006;31(4):613–4.

    Article  CAS  PubMed  Google Scholar 

  55. Caumes E. Treatment of cutaneous larva migrans. Clin Infect Dis. 2000;30(5):811–4.

    Article  CAS  PubMed  Google Scholar 

  56. Heukelbach J, Hengge UR. Bed bugs, leeches and hookworm larvae in the skin. Clin Dermatol. 2009;27(3):285–90.

    Article  PubMed  Google Scholar 

  57. Savoia D. Recent updates and perspectives on leishmaniasis. J Infect Dev Ctries. 2015;9(6):588–96.

    Article  CAS  PubMed  Google Scholar 

  58. World Health Organization (WHO). Leishmaniasis. Available at: http://www.who.int/topics/leishmaniasis/en/. Accessed 26 Dec 2015.

  59. de Vries HJ, Reedijk SH, Schallig HD. Cutaneous leishmaniasis: recent developments in diagnosis and management. Am J Clin Dermatol. 2015;16(2):99–109.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Savioli L, Velayudhan R. Small bite, big threat: World Health Day 2014. East Mediterr Health J. 2014;20(4):217–8.

    Article  PubMed  Google Scholar 

  61. Lainson R, Shaw JJ. New World Leishmaniasis. In: Cox FEG, Wakelin D, Gillespie SH, Despommier DD, eds. Topley & Wilson’s Microbiology and Microbial Infections, 10th ed. London: Wiley & Blackwell: 2005. pp. 313–349.

    Google Scholar 

  62. World Health Organization (WHO). Leishmaniasis: worldwide epidemiological and drug acces update. Available at: www.who.int/Leishmaniasis/resources/Leishmaniasis_worldwide_epidemiological_and_drug_access_update.pdf. Accessed 20 Jan 2016.

  63. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Kevric I, Cappel MA, Keeling JH. New world and old world leishmania infections: a practical review. Dermatol Clin. 2015;33(3):579–93.

    Article  CAS  PubMed  Google Scholar 

  65. Pavli A, Maltezou HC. Leishmaniasis, an emerging infection in travelers. Int J Infect Dis. 2010;14(12):e1032–9.

    Article  PubMed  Google Scholar 

  66. Lawn SD, Whetham J, Chiodini PL, Kanagalingam J, Watson J, Behrens RH, et al. New world mucosal and cutaneous leishmaniasis: an emerging health problem among British travellers. QJM. 2004;97(12):781–8.

    Article  CAS  PubMed  Google Scholar 

  67. El Hajj L, Thellier M, Carriere J, Bricaire F, Danis M, Caumes E. Localized cutaneous leishmaniasis imported into Paris: a review of 39 cases. Int J Dermatol. 2004;43(2):120–5.

    Article  PubMed  Google Scholar 

  68. Control of the leishmaniases. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1990;793:1–158.

    Google Scholar 

  69. Mauricio IL, Stothard JR, Miles MA. The strange case of Leishmania chagasi. Parasitol Today. 2000;16(5):188–9.

    Article  CAS  PubMed  Google Scholar 

  70. Banuls AL, Hide M, Prugnolle F. Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Adv Parasitol. 2007;64:1–109.

    Article  PubMed  Google Scholar 

  71. Zhang WW, Matlashewski G. Characterization of the A2-A2rel gene cluster in Leishmania donovani: involvement of A2 in visceralization during infection. Mol Microbiol. 2001;39(4):935–48.

    Article  CAS  PubMed  Google Scholar 

  72. Alexander J, Brombacher F. T helper1/T helper2 cells and resistance/susceptibility to leishmania infection: is this paradigm still relevant? Front Immunol. 2012;3:80.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. da Silva SC, Brodskyn CI. The role of CD4 and CD8 T cells in human cutaneous leishmaniasis. Front Public Health. 2014;2:165.

    Google Scholar 

  74. Bates PA, Ashford RW. Old World leishmaniasis. In: Cox FEG, Wakelin D, Gillespie SH, Despommier DD, eds. Topley & Wilson’s Microbiology and Microbial Infections. 10th ed. Parasitology, Hodder Arnold; London: 2006. pp. 283–312.

    Google Scholar 

  75. Schwartz E, Hatz C, Blum J. New world cutaneous leishmaniasis in travallers. Lancet Infect Dis. 2006;6(6):342–9.

    Article  PubMed  Google Scholar 

  76. Gontijo B, Carvalho M. Leishmaniose tegumentar americana. Rev Soc Bras Med Trop. 2003;36(1):71–80.

    Article  PubMed  Google Scholar 

  77. Machado-Coelho GL, Caiaffa WT, Genaro O, Magalhaes PA, Mayrink W. Risk factors for mucosal manifestation of American cutaneous leishmaniasis. Trans R Soc Trop Med Hyg. 2005;99(1):55–61.

    Article  PubMed  Google Scholar 

  78. Sinha S, Fernandez G, Kapila R, Lambert WC, Schwartz RA. Diffuse cutaneous leishmaniasis associated with the immune reconstitution inflammatory syndrome. Int J Dermatol. 2008;47(12):1263–70.

    Article  PubMed  Google Scholar 

  79. Desjeux PGR, Dhalaria P, Strub-Wourgaft N, Zijlstra EE. Report of the post-kalazar dermal leishmaniasis (PKDL) consortium meeting, New Dehli, India, 27-29 June 2012. Parasit Vectors. 2013;2(6):196.

    Article  Google Scholar 

  80. Handler MZ, Patel PA, Kapila R, Al-Qubati Y, Schwartz RA. Cutaneous and mucocutaneous leishmaniasis: differential diagnosis, diagnosis, histopathology, and management. J Am Acad Dermatol. 2015;73(6):911–26.

    Article  PubMed  Google Scholar 

  81. Elmahallawy EK, Sampedro Martinez A, Rodriguez-Granger J, Hoyos-Mallecot Y, Agil A, Navarro Mari JM, et al. Diagnosis of leishmaniasis. J Infect Dev Ctries. 2014;8(8):961–72.

    Article  PubMed  Google Scholar 

  82. Gontijo B. A reação em cadeia da polimerase (PCR) no diagnóstico da leishmaniose tegumentar americana. Belo Horizonte, MG. Brasil: Universidade Federal de Minas Gerais; 1997.

    Google Scholar 

  83. Neitzke-Abreu HC, Venazzi MS, Bernal MV, Reinhold-Castro KR, Vagetti F, Mota CA, et al. Detection of DNA from Leishmania (Viannia): accuracy of polymerase chain reaction for the diagnosis of cutaneous leishmaniasis. PLoS One. 2013;8(7):e62473.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Neves LO, Talhari AC, Gadelha EP, Silva Junior RM, Guerra JA, Ferreira LC, et al. A randomized clinical trial comparing meglumine antimoniate, pentamidine and amphotericin B for the treatment of cutaneous leishmaniasis by Leishmania guyanensis. An Bras Dermatol. 2011;86(6):1092–101.

    Article  PubMed  Google Scholar 

  85. Lemrani M, Hamdi S, Laamrani A, Hassar M. PCR detection of Leishmania in skin biopsies. J Infect Dev Ctries. 2009;3(2):115–22.

    Article  PubMed  Google Scholar 

  86. Santos TR, Carreira VS, Ferrari HF, Moreira MA, Luvizotto MC. Comparison of PCR with stained slides of bone marrow and lymph nodes aspirates with suspect diagnosis for leishmaniasis. Acta Trop. 2014;140:137–40.

    Google Scholar 

  87. US Centers for Disease Control and Prevention. Practical guide for specimen collection and reference diagnosis of leishmaniasis. Available from: http://www.cdc.gov/parasistes/leishmaniasis/resources/pdf/cdc_dianosis_guide_leishmaniasis.pdf. Accessed 18 Jan 2016.

  88. Benicio Ede A, Gadelha EP, Talhari A, Silva RM Jr, Ferreira LC, Santos MC, et al. Combining diagnostic procedures for the management of leishmaniasis in areas with high prevalence of Leishmania guyanensis. An Bras Dermatol. 2011;86(6):1141–4.

    Article  PubMed  Google Scholar 

  89. Goto H, Lindoso JA. Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis. Expert Rev Anti-Infect Ther. 2010;8(4):419–33.

    Article  PubMed  Google Scholar 

  90. World Health Organization (WHO). Control of leishmaniases. World Health Organ Tech Rep Ser. 2010;949:xii–xiii. 1-186, back cover

    Google Scholar 

  91. Chrusciak-Talhari A, Dietze R, Chrusciak Talhari C, da Silva RM, Gadelha Yamashita EP, de Oliveira PG, et al. Randomized controlled clinical trial to access efficacy and safety of miltefosine in the treatment of cutaneous leishmaniasis caused by Leishmania (Viannia) guyanensis in Manaus. Brazil Am J Trop Med Hyg. 2011;84(2):255–60.

    Article  CAS  PubMed  Google Scholar 

  92. Andersen EM, Cruz-Saldarriaga M, Llanos-Cuentas A, Luz-Cjuno M, Echevarria J, Miranda-Verastegui C, et al. Comparison of meglumine antimoniate and pentamidine for peruvian cutaneous leishmaniasis. Am J Trop Med Hyg. 2005;72(2):133–7.

    Article  CAS  PubMed  Google Scholar 

  93. Sundar S, Chakravarty J, Agarwal D, Rai M, Murray HW. Single-dose liposomal amphotericin B for visceral leishmaniasis in India. N Engl J Med. 2010;362(6):504–12.

    Article  CAS  PubMed  Google Scholar 

  94. Gadelha EP, Talhari S, Guerra JA, Neves LO, Talhari C, Gontijo B, et al. Efficacy and safety of a single dose pentamidine (7 mg/kg) for patients with cutaneous leishmaniasis caused by L. guyanensis: a pilot study. An Bras Dermatol. 2015;90(6):807–13.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sundar S, Jha TK, Thakur CP, Bhattacharya SK, Rai M. Oral miltefosine for the treatment of Indian visceral leishmaniasis. Trans R Soc Trop Med Hyg. 2006;100(Suppl 1):S26–33.

    Article  CAS  PubMed  Google Scholar 

  96. Soto J, Arana BA, Toledo J, Rizzo N, Vega JC, Diaz A, et al. Miltefosine for new world cutaneous leishmaniasis. Clin Infect Dis. 2004;38(9):1266–72.

    Article  CAS  PubMed  Google Scholar 

  97. Mohebali M, Fotouhi A, Hooshmand B, Zarei Z, Akhoundi B, Rahnema A, et al. Comparison of miltefosine and meglumine antimoniate for the treatment of zoonotic cutaneous leishmaniasis (ZCL) by a randomized clinical trial in Iran. Acta Trop. 2007;103(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  98. Soto J, Rojas E, Guzman M, Verduguez A, Nena W, Maldonado M, et al. Intralesional antimony for single lesions of bolivian cutaneous leishmaniasis. Clin Infect Dis. 2013;56(9):1255–60.

    Article  CAS  PubMed  Google Scholar 

  99. Soto J, Hernandez N, Mejia H, Grogl M, Berman J. Successful treatment of New World cutaneous leishmaniasis with a combination of topical paromomycin/methylbenzethonium chloride and injectable meglumine antimonate. Clin Infect Dis. 1995;20(1):47–51.

    Article  CAS  PubMed  Google Scholar 

  100. US Centers for Disease Control and Prevention. Information for international travel 2016. Available at: http://www.cdc.gov/travel/yellowbook/2016/table-of-contents. Accessed 18 Jan 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Talhari MD, PhD .

Editor information

Editors and Affiliations

Glossary

Amastigote

Two developmental stages are formed (Leishmania): the amastigotes are small spherical nonflagellated cells ranging from 2 to 4 μm in diameter. The nucleus and kinetoplast are surrounded by small ring of vacuolated cytoplasm and the cells are among the smallest nucleated cells known.

Anergic pole/hyperergic pole

The two pathogenicity extremes of the spectrum generally recognized are represented at the hypersensitivity pole by mucocutaneous leishmaniasis (MCL) and at the hyposensitivity pole by anergic diffuse cutaneous leishmaniasis (ADCL).

Colonization

The human body harbors a large number of bacteria but their localization in healthy individuals is normally restricted to certain body areas such as the skin, the mucosae of buccal and nasal cavities, vagina, and, most importantly, the gastrointestinal tract. Colonization is the act of setting up a colony away from one’s place of origin.

Ectoparasite

A parasite that lives on or in the skin but not within the body.

Fomite

A fomes or fomite is any nonliving object or substance capable of carrying infectious organisms, such as germs or parasites and hence transferring them from one individual to another. Skin cells, hair, clothing, and bedding are common hospital sources of contamination.

Hyaluronidase

A family of enzymes that degrade hyaluronic acid.

Infestations

Parasites, including harmful nanites, cause infestations, which are a type of affliction similar to diseases. Also known as or related to infestation by pediculus, pubic louse infestation, pediculosis pubis, and pediculosis.

Monilethrix

A condition that affects hair growth. Its most characteristic feature is that individual strands of hair have a beaded appearance like the beads of a necklace.

Promastigote

Two developmental stages are formed (Leishmania): amastigotes and promastigotes. Promastigotes are thin elongated cells with an anterior kinetoplast and an emergent free flagellum.

Proteases

Any enzyme that performs proteolysis, that is, begins protein catabolism by hydrolysis of the peptide bonds that link amino acids together in a polypeptide chain.

Skin microbiota

The skin flora, more properly referred to as the skin microbiota, are the microorganisms which reside on the skin.

Th1 response

The Th1 response is characterized by the production of interferon-γ, which activates the bactericidal activities of macrophages, induces B cells to make opsonizing (coating) and complement-fixing antibodies, and leads to cell-mediated immunity.

Th2 response

The Th2 response is characterized by the release of interleukin-5, which induces eosinophils in the clearance of parasites. Th2 also produce interleukin-4, which facilitates B-cell isotype switching. In general, Th2 responses are more effective against extracellular bacteria, parasites including helminths, and toxins.

Trichorrhexis nodosa

A defect in the hair shaft characterized by thickening or weak points (nodes) that cause the hair to break off easily.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Talhari, C., Nakajima, S., Gontijo, B. (2018). Parasitic and Protozoal Infections. In: Bonamigo, R., Dornelles, S. (eds) Dermatology in Public Health Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-33919-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33919-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33917-7

  • Online ISBN: 978-3-319-33919-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics