Skip to main content

Functional Assessment of Microbial, Viral, and Parasitic Infections Using Real-Time Cellular Analysis

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology

Abstract

An ability to monitor cells in real time has the potential to help elucidate the mechanisms underlying health and disease in diverse areas of biomedical research and clinical diagnostics. In the specific contexts of microbial, viral, and parasitic infections, being able to continuously track the structural and functional changes that occur in the host or pathogen cells can be used for clinical diagnosis, monitoring treatment efficacy, etc. The xCELLigence® Real-Time Cell Analysis (RTCA) instrument from ACEA Biosciences is a label-free microelectronic sensor-based technology that enables live cell analysis for these purposes. Using the principle of cellular impedance, RTCA dynamically monitors changes in cell number, cell size, cell-cell interactions (i.e., barrier function), and cell-substrate attachment quality to provide a wealth of information that is missed using traditional endpoint assays. In this chapter, we describe using RTCA to identify, quantify, and dynamically monitor bacterial, viral, and parasitic infections. Using recent publications, we demonstrate the application of RTCA for diverse aspects of microbiology, including bacterial toxin detection, virus-induced cytopathic effect quantification, neutralizing antibody detection, bacterial biofilm antibiotic susceptibility screening, and anthelmintic drug screening, as well as functional analysis of host immune cell activity. RTCA is shown to display great promise both for clinical detection of toxins/pathogens and for ex vivo theranostic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen X, Xu J, Shuai J, Chen J, Zhang Z, Fang W. The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium. Int J Food Microbiol. 2007;115:307–12.

    Article  CAS  PubMed  Google Scholar 

  2. Gower SG, Wright EC, Davies G, Morgan WJ, Hopkinson WI, Gibbs DF, Bennet EJ. An automated Rose Bengal agglutination test using the ADAM system. Vet Rec. 1974;95:544–7.

    Article  CAS  PubMed  Google Scholar 

  3. Kline KA, Falker S, Dahlberg S, Normark S, Henriques-Normark B. Bacterial adhesins in host-microbe interactions. Cell Host Microbe. 2009;5:580–92.

    Article  CAS  PubMed  Google Scholar 

  4. Slanina H, Konig A, Claus H, Frosch M, Schubert-Unkmeir A. Real-time impedance analysis of host cell response to meningococcal infection. J Microbiol Methods. 2011;84:101–8.

    Article  CAS  PubMed  Google Scholar 

  5. Leland DS, Ginocchio CC. Role of cell culture for virus detection in the age of technology. Clin Microbiol Rev. 2007;20:49–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giaever I, Keese CR. Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture. IEEE Trans Biomed Eng. 1986;33:242–7.

    Article  CAS  PubMed  Google Scholar 

  7. Giaever I, Keese CR. A morphological biosensor for mammalian cells. Nature. 1993;366:591–2.

    Article  CAS  PubMed  Google Scholar 

  8. Ryder AB, Huang Y, Li H, Zheng M, Wang X, Stratton CW, Xu X, Tang YW. Assessment of Clostridium difficile infections by quantitative detection of tcdB toxin by use of a real-time cell analysis system. J Clin Microbiol. 2010;48:4129–34.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fang Y, Ye P, Wang X, Xu X, Reisen W. Real-time monitoring of flavivirus induced cytopathogenesis using cell electric impedance technology. J Virol Methods. 2011;173:251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun F, Zhang Y, Tian D, Zheng M, Liu L, Zhang R, Dai Z, Chen J, Li T, Lu H. Responses after one dose of a monovalent influenza A (H1N1) 2009 inactivated vaccine in Chinese population—a practical observation. Vaccine. 2011;29:6527–31.

    Article  PubMed  Google Scholar 

  11. Jin D, Luo Y, Zheng M, Li H, Zhang J, Stampfl M, Xu X, Ding G, Zhang Y, Tang YW. Quantitative detection of Vibrio cholera toxin by real-time and dynamic cytotoxicity monitoring. J Clin Microbiol. 2013;51:3968–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Huang B, Jin D, Zhang J, Sun JY, Wang X, Stiles J, Xu X, Kamboj M, Babady NE, Tang YW. Real-time cellular analysis coupled with a specimen enrichment accurately detects and quantifies Clostridium difficile toxins in stool. J Clin Microbiol. 2014;52:1105–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Smout MJ, Kotze AC, McCarthy JS, Loukas A. A novel high throughput assay for anthelmintic drug screening and resistance diagnosis by real-time monitoring of parasite motility. PLoS Negl Trop Dis. 2010;4:e885.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lu HZ, Xiao XX. Label-free real-time cell based assay system for evaluating H1N1 vaccination success. Asia Pacific Biotech News. 2011;14:15–7.

    Google Scholar 

  15. Xing JZ, Zhu L, Jackson JA, Gabos S, Sun XJ, Wang XB, Xu X. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol. 2005;18:154–61.

    Article  CAS  PubMed  Google Scholar 

  16. Atienza JM, Zhu J, Wang X, Xu X, Abassi Y. Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J Biomol Screen. 2005;10:795–805.

    Article  CAS  PubMed  Google Scholar 

  17. Atienza JM, Yu N, Kirstein SL, Xi B, Wang X, Xu X, Abassi YA. Dynamic and label-free cell-based assays using the real-time cell electronic sensing system. Assay Drug Dev Technol. 2006;4:597–607.

    Article  CAS  PubMed  Google Scholar 

  18. Solly K, Wang X, Xu X, Strulovici B, Zheng W. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev Technol. 2004;2:363–72.

    Article  CAS  PubMed  Google Scholar 

  19. Abassi YA, Xi B, Zhang W, Ye P, Kirstein SL, Gaylord MR, Feinstein SC, Wang X, Xu X. Kinetic cell-based morphological screening: prediction of mechanism of compound action and off-target effects. Chem Biol. 2009;16:712–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu N, Atienza JM, Bernard J, Blanc S, Zhu J, Wang X, Xu X, Abassi YA. Real-time monitoring of morphological changes in living cells by electronic cell sensor arrays: an approach to study G protein-coupled receptors. Anal Chem. 2006;78:35–43.

    Article  CAS  PubMed  Google Scholar 

  21. Huang B, Li H, Jin D, Stratton CW, Tang YW. Real-time cellular analysis for quantitative detection of functional Clostridium difficile toxin in stool. Expert Rev Mol Diagn. 2014;14:281–91.

    Article  CAS  PubMed  Google Scholar 

  22. Kelly CP, LaMont JT. Clostridium difficile—more difficult than ever. N Engl J Med. 2008;359:1932–40.

    Article  CAS  PubMed  Google Scholar 

  23. Knight DR, Elliott B, Chang BJ, Perkins TT, Riley TV. Diversity and evolution in the genome of Clostridium difficile. Clin Microbiol Rev. 2015;28:721–41.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bauer MP, Notermans DW, van Benthem BH, Brazier JS, Wilcox MH, Rupnik M, Monnet DL, van Dissel JT, Kuijper EJ. Clostridium difficile infection in Europe: a hospital-based survey. Lancet. 2011;377:63–73.

    Article  PubMed  Google Scholar 

  25. Collins DA, Hawkey PM, Riley TV. Epidemiology of Clostridium difficile infection in Asia. Antimicrob Resist Infect Control. 2013;2:21.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Borgmann S, Kist M, Jakobiak T, Reil M, Scholz E, von Eichel-Streiber C, Gruber H, Brazier JS, Schulte B. Increased number of Clostridium difficile infections and prevalence of Clostridium difficile PCR ribotype 001 in southern Germany. Euro Surveill. 2008;13:19057.

    PubMed  Google Scholar 

  27. Chang TW, Lauermann M, Bartlett JG. Cytotoxicity assay in antibiotic-associated colitis. J Infect Dis. 1979;140:765–70.

    Article  CAS  PubMed  Google Scholar 

  28. Pollock NR. Ultrasensitive detection and quantification of toxins for optimized diagnosis of Clostridium difficile infection. J Clin Microbiol. 2016;54:259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bartlett JG. Update in infectious diseases. Ann Intern Med. 2006;144:49–56.

    Article  PubMed  Google Scholar 

  30. Planche T, Aghaizu A, Holliman R, Riley P, Poloniecki J, Breathnach A, Krishna S. Diagnosis of Clostridium difficile infection by toxin detection kits: a systematic review. Lancet Infect Dis. 2008;8:777–84.

    Article  PubMed  Google Scholar 

  31. Carroll KC, Buchan BW, Tan S, Stamper PD, Riebe KM, Pancholi P, Kelly C, Rao A, Fader R, Cavagnolo R, Watson W, Goering RV, Trevino EA, Weissfeld AS, Ledeboer NA. Multicenter evaluation of the Verigene Clostridium difficile nucleic acid assay. J Clin Microbiol. 2013;51:4120–5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Polage CR, Gyorke CE, Kennedy MA, Leslie JL, Chin DL, Wang S, Nguyen HH, Huang B, Tang YW, Lee LW, Kim K, Taylor S, Romano PS, Panacek EA, Goodell PB, Solnick JV, Cohen SH. Overdiagnosis of Clostridium difficile infection in the molecular test era. JAMA Intern Med. 2015;175:1792–801.

    Article  PubMed  PubMed Central  Google Scholar 

  33. He X, Wang J, Steele J, Sun X, Nie W, Tzipori S, Feng H. An ultrasensitive rapid immunocytotoxicity assay for detecting Clostridium difficile toxins. J Microbiol Methods. 2009;78:97–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang G, Zhou B, Wang J, He X, Sun X, Nie W, Tzipori S, Feng H. Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium. BMC Microbiol. 2008;8:192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Harris JB, LaRocque RC, Qadri F, Ryan ET, Calderwood SB. Cholera. Lancet. 2012;379:2466–76.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sears CL, Kaper JB. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol Rev. 1996;60:167–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chaicumpa W, Srimanote P, Sakolvaree Y, Kalampaheti T, Chongsa-Nguan M, Tapchaisri P, Eampokalap B, Moolasart P, Nair GB, Echeverria P. Rapid diagnosis of cholera caused by Vibrio cholerae O139. J Clin Microbiol. 1998;36:3595–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rabbani GH, Greenough WB 3rd. Food as a vehicle of transmission of cholera. J Diarrhoeal Dis Res. 1999;17:1–9.

    CAS  PubMed  Google Scholar 

  39. Ronnberg B, Wadstrom T. Rapid detection by a coagglutination test of heat-labile enterotoxin in cell lysates from blood agar-grown Escherichia coli. J Clin Microbiol. 1983;17:1021–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Spangler BD. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev. 1992;56:622–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Donta ST, Moon HW, Whipp SC. Detection of heat-labile Escherichia coli enterotoxin with the use of adrenal cells in tissue culture. Science. 1974;183:334–6.

    Article  CAS  PubMed  Google Scholar 

  42. Said B, Scotland SM, Rowe B. The use of gene probes, immunoassays and tissue culture for the detection of toxin in Vibrio cholerae non-O1. J Med Microbiol. 1994;40:31–6.

    Article  CAS  PubMed  Google Scholar 

  43. Edwards KA, March JC. GM(1)-functionalized liposomes in a microtiter plate assay for cholera toxin in Vibrio cholerae culture samples. Anal Biochem. 2007;368:39–48.

    Article  CAS  PubMed  Google Scholar 

  44. Honma Y, Higa N, Tsuji T, Iwanaga M. Comparison of a reversed passive latex agglutination and a polymerase chain reaction for identification of cholera toxin producing Vibrio cholerae O1. Microbiol Immunol. 1995;39:59–61.

    Article  CAS  PubMed  Google Scholar 

  45. Ahn-Yoon S, DeCory TR, Baeumner AJ, Durst RA. Ganglioside-liposome immunoassay for the ultrasensitive detection of cholera toxin. Anal Chem. 2003;75:2256–61.

    Article  CAS  PubMed  Google Scholar 

  46. Hejtmancik KE, Peterson JW, Markel DE, Kurosky A. Radioimmunoassay for the antigenic determinants of cholera toxin and its components. Infect Immun. 1977;17:621–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Charles PT, Velez F, Soto CM, Goldman ER, Martin BD, Ray RI, Taitt CR. A galactose polyacrylate-based hydrogel scaffold for the detection of cholera toxin and staphylococcal enterotoxin B in a sandwich immunoassay format. Anal Chim Acta. 2006;578:2–10.

    Article  CAS  PubMed  Google Scholar 

  48. Ngundi MM, Taitt CR, McMurry SA, Kahne D, Ligler FS. Detection of bacterial toxins with monosaccharide arrays. Biosens Bioelectron. 2006;21:1195–201.

    Article  CAS  PubMed  Google Scholar 

  49. Rucker VC, Havenstrite KL, Herr AE. Antibody microarrays for native toxin detection. Anal Biochem. 2005;339:262–70.

    Article  CAS  PubMed  Google Scholar 

  50. Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden JP. Array biosensor for detection of toxins. Anal Bioanal Chem. 2003;377:469–77.

    Article  CAS  PubMed  Google Scholar 

  51. Lian W, Wu D, Lim DV, Jin S. Sensitive detection of multiplex toxins using antibody microarray. Anal Biochem. 2010;401:271–9.

    Article  CAS  PubMed  Google Scholar 

  52. Evers DL, He J, Mason JT, O’Leary TJ. The liposome PCR assay is more sensitive than the Vibrio cholerae enterotoxin and Escherichia coli heat-labile enterotoxin reversed passive latex agglutination test at detecting cholera toxin in feces and water. J Clin Microbiol. 2010;48:4620–2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fields PI, Popovic T, Wachsmuth K, Olsvik O. Use of polymerase chain reaction for detection of toxigenic Vibrio cholerae O1 strains from the Latin American cholera epidemic. J Clin Microbiol. 1992;30:2118–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang J, Zhu Y, Wen H, Zhang J, Huang S, Niu J, Li Q. Quadruplex real-time PCR assay for detection and identification of Vibrio cholerae O1 and O139 strains and determination of their toxigenic potential. Appl Environ Microbiol. 2009;75:6981–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blackstone GM, Nordstrom JL, Bowen MD, Meyer RF, Imbro P, DePaola A. Use of a real time PCR assay for detection of the ctxA gene of Vibrio cholerae in an environmental survey of Mobile Bay. J Microbiol Methods. 2007;68:254–9.

    Article  CAS  PubMed  Google Scholar 

  56. Zayats M, Raitman OA, Chegel VI, Kharitonov AB, Willner I. Probing antigen-antibody binding processes by impedance measurements on ion-sensitive field-effect transistor devices and complementary surface plasmon resonance analyses: development of cholera toxin sensors. Anal Chem. 2002;74:4763–73.

    Article  CAS  PubMed  Google Scholar 

  57. Taitt CR, Anderson GP, Lingerfelt BM, Feldstein MJ, Ligler FS. Nine-analyte detection using an array-based biosensor. Anal Chem. 2002;74:6114–20.

    Article  CAS  PubMed  Google Scholar 

  58. Alfonta L, Willner I, Throckmorton DJ, Singh AK. Electrochemical and quartz crystal microbalance detection of the cholera toxin employing horseradish peroxidase and GM1-functionalized liposomes. Anal Chem. 2001;73:5287–95.

    Article  CAS  PubMed  Google Scholar 

  59. Phillips KS, Han JH, Martinez M, Wang Z, Carter D, Cheng Q. Nanoscale glassification of gold substrates for surface plasmon resonance analysis of protein toxins with supported lipid membranes. Anal Chem. 2006;78:596–603.

    Article  CAS  PubMed  Google Scholar 

  60. Viswanathan S, Wu LC, Huang MR, Ho JA. Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Anal Chem. 2006;78:1115–21.

    Article  CAS  PubMed  Google Scholar 

  61. Chen H, Zheng Y, Jiang JH, Wu HL, Shen GL, Yu RQ. An ultrasensitive chemiluminescence biosensor for cholera toxin based on ganglioside-functionalized supported lipid membrane and liposome. Biosens Bioelectron. 2008;24:684–9.

    Article  CAS  PubMed  Google Scholar 

  62. Cheng Q, Zhu S, Song J, Zhang N. Functional lipid microstructures immobilized on a gold electrode for voltammetric biosensing of cholera toxin. Analyst. 2004;129:309–14.

    Article  CAS  PubMed  Google Scholar 

  63. Kuramitz H, Miyagaki S, Ueno E, Hata N, Taguchi S, Sugawara K. Binding assay for cholera toxin based on sequestration electrochemistry using lactose labeled with an electroactive compound. Analyst. 2011;136:2373–8.

    Article  CAS  PubMed  Google Scholar 

  64. Ngundi MM, Taitt CR, Ligler FS. Simultaneous determination of kinetic parameters for the binding of cholera toxin to immobilized sialic acid and monoclonal antibody using an array biosensor. Biosens Bioelectron. 2006;22:124–30.

    Article  CAS  PubMed  Google Scholar 

  65. Chiriaco MS, Primiceri E, D’Amone E, Ionescu RE, Rinaldi R, Maruccio G. EIS microfluidic chips for flow immunoassay and ultrasensitive cholera toxin detection. Lab Chip. 2011;11:658–63.

    Article  CAS  PubMed  Google Scholar 

  66. EA J. Clostridium botulinum and Clostridium tetani. 8th ed. London: Arnold Hodder; 2005.

    Google Scholar 

  67. Blasi J, Chapman ER, Link E, Binz T, Yamasaki S, De Camilli P, Sudhof TC, Niemann H, Jahn R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 1993;365:160–3.

    Article  CAS  PubMed  Google Scholar 

  68. Binz T, Blasi J, Yamasaki S, Baumeister A, Link E, Sudhof TC, Jahn R, Niemann H. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem. 1994;269:1617–20.

    CAS  PubMed  Google Scholar 

  69. Neale EA, Bowers LM, Jia M, Bateman KE, Williamson LC. Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal. J Cell Biol. 1999;147:1249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dolly JO, Lawrence GW. Chapter 3: Molecular basis for the therapeutic effectiveness of botulinum neurotoxin type. Neurourol Urodyn. 2014;33(Suppl 3):S14–20.

    Article  CAS  PubMed  Google Scholar 

  71. Lindstrom M, Korkeala H. Laboratory diagnostics of botulism. Clin Microbiol Rev. 2006;19:298–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. O’Connell JAY, Xi B, Wang X, Xu X. Real-time cell-based toxicology testing might replace animal testing for product release and drug safety. Biochemica. 2008;4:11–3.

    Google Scholar 

  73. Schubert-Unkmeir A, Konrad C, Slanina H, Czapek F, Hebling S, Frosch M. Neisseria meningitidis induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin: a role for MMP-8. PLoS Pathog. 2010;6:e1000874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Ng WL, Bassler BL. Bacterial quorum-sensing network architectures. Annu Rev Genet. 2009;43:197–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hawver LA, Jung SA, Ng WL. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol Rev. 2016;40:738–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Junka AFJA, Smutnicka D, Mączyńska B, Secewicz A, Nowicka J, Bartoszewicz M, Gościniak G. Use of the real time xCelligence system for purposes of medical microbiology. Pol J Microbiol. 2012;61:191–7.

    PubMed  Google Scholar 

  77. Cihalova K, Chudobova D, Michalek P, Moulick A, Guran R, Kopel P, Adam V, Kizek R. Staphylococcus aureus and MRSA growth and biofilm formation after treatment with antibiotics and SeNPs. Int J Mol Sci. 2015;16:24656–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ferrer MD, Rodriguez JC, Alvarez L, Artacho A, Royo G, Mira A. Effect of antibiotics on biofilm inhibition and induction measured by real-time cell analysis. J Appl Microbiol. 2017;122:640–50.

    Article  CAS  PubMed  Google Scholar 

  79. Gutierrez D, Hidalgo-Cantabrana C, Rodriguez A, Garcia P, Ruas-Madiedo P. Monitoring in real time the formation and removal of biofilms from clinical related pathogens using an impedance-based technology. PloS one. 2016;11:e0163966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Wang T, Su J. Bacillus subtilis from soybean food shows antimicrobial activity for multidrug-resistant Acinetobacter baumannii by affecting the adeS gene. J Microbiol Biotechnol. 2016;26:2043–50.

    Article  CAS  PubMed  Google Scholar 

  81. van Duuren J, Musken M, Karge B, Tomasch J, Wittmann C, Haussler S, Bronstrup M. Use of Single-Frequency Impedance Spectroscopy to Characterize the Growth Dynamics of Biofilm Formation in Pseudomonas aeruginosa. Sci Rep. 2017;7:5223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Gutierrez D, Fernandez L, Martinez B, Ruas-Madiedo P, Garcia P, Rodriguez A. Real-time assessment of Staphylococcus aureus biofilm disruption by phage-derived proteins. Front Microbiol. 2017;8:1632.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kramer LD, Styer LM, Ebel GD. A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol. 2008;53:61–81.

    Article  CAS  PubMed  Google Scholar 

  84. Reisen WK, Chiles RE, Martinez VM, Fang Y, Green EN. Experimental infection of California birds with western equine encephalomyelitis and St. Louis encephalitis viruses. J Med Entomol. 2003;40:968–82.

    Article  CAS  PubMed  Google Scholar 

  85. Oceguera LF 3rd, Patiris PJ, Chiles RE, Busch MP, Tobler LH, Hanson CV. Flavivirus serology by Western blot analysis. Am J Trop Med Hyg. 2007;77:159–63.

    Article  CAS  PubMed  Google Scholar 

  86. Patiris PJ, Oceguera LF 3rd, Peck GW, Chiles RE, Reisen WK, Hanson CV. Serologic diagnosis of West Nile and St. Louis encephalitis virus infections in domestic chickens. Am J Trop Med Hyg. 2008;78:434–41.

    Article  PubMed  Google Scholar 

  87. McCoy MH, Wang E. Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza A virus infected MDCK cells in real-time. J Virol Methods. 2005;130:157–61.

    Article  CAS  PubMed  Google Scholar 

  88. Fang Y. Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev Technol. 2006;4:583–95.

    Article  CAS  PubMed  Google Scholar 

  89. Teng Z, Kuang X, Wang J, Zhang X. Real-time cell analysis--a new method for dynamic, quantitative measurement of infectious viruses and antiserum neutralizing activity. J Virol Methods. 2013;193:364–70.

    Article  CAS  PubMed  Google Scholar 

  90. Piret J, Goyette N, Boivin G. Novel method based on real-time cell analysis for drug susceptibility testing of herpes simplex virus and human cytomegalovirus. J Clin Microbiol. 2016;54:2120–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Albonico M, Allen H, Chitsulo L, Engels D, Gabrielli AF, Savioli L. Controlling soil-transmitted helminthiasis in pre-school-age children through preventive chemotherapy. PLoS Negl Trop Dis. 2008;2:e126.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Brunner KT, Mauel J, Cerottini JC, Chapuis B. Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology. 1968;14:181–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Glamann J, Hansen AJ. Dynamic detection of natural killer cell-mediated cytotoxicity and cell adhesion by electrical impedance measurements. Assay Drug Dev Technol. 2006;4:555–63.

    Article  CAS  PubMed  Google Scholar 

  94. Zhu J, Wang X, Xu X, Abassi YA. Dynamic and label-free monitoring of natural killer cell cytotoxic activity using electronic cell sensor arrays. J Immunol Methods. 2006;309:25–33.

    Article  CAS  PubMed  Google Scholar 

  95. Bleeker WK, Lammerts van Bueren JJ, van Ojik HH, Gerritsen AF, Pluyter M, Houtkamp M, Halk E, Goldstein J, Schuurman J, van Dijk MA, van de Winkel JG, Parren PW. Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy. J Immunol. 2004;173:4699–707.

    Article  CAS  PubMed  Google Scholar 

  96. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002;20:621–67.

    Article  CAS  PubMed  Google Scholar 

  97. Messele T, Roos MT, Hamann D, Koot M, Fontanet AL, Miedema F, Schellekens PT, Rinke de Wit TF. Nonradioactive techniques for measurement of in vitro T-cell proliferation: alternatives to the [(3)H]thymidine incorporation assay. Clin Diagn Lab Immunol. 2000;7:687–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sieg SF, Harding CV, Lederman MM. HIV-1 infection impairs cell cycle progression of CD4(+) T cells without affecting early activation responses. J Clin Invest. 2001;108:757–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998;188:2205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Guan N, Deng J, Li T, Xu X, Irelan JT, Wang MW. Label-free monitoring of T cell activation by the impedance-based xCELLigence system. Mol BioSyst. 2013;9:1035–43.

    Article  CAS  PubMed  Google Scholar 

  101. Salazar-Fontana LI, Barr V, Samelson LE, Bierer BE. CD28 engagement promotes actin polymerization through the activation of the small rho GTPase Cdc42 in human T cells. J Immunol. 2003;171:2225–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazhi Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jin, D., Xu, X., Zheng, M., Mira, A., Lamarche, B.J., Ryder, A.B. (2018). Functional Assessment of Microbial, Viral, and Parasitic Infections Using Real-Time Cellular Analysis. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-33900-9_8

Download citation

Publish with us

Policies and ethics