Skip to main content

Rapid Microbial Antigen Tests

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology

Abstract

Immunoassays for the detection of the antigens of microorganisms remain important tools for the diagnosis and management of infectious diseases. Antigen tests have long been used to detect infectious agents and are particularly useful for those agents that are difficult, slow, or hazardous to culture. While antigen tests are being superseded in many cases by simple and rapid molecular amplification methods, the combination of speed, economy, simplicity, and lack of expensive equipment allows antigen tests to retain a role in rapid testing, point-of-care testing, testing in low- to mid-resource areas, and global health testing. In this chapter, the principles of antigen detection techniques are reviewed, along with their current applications in diagnostic microbiology and clinical practice, including in global health testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpenter AB. Antibody-based methods. Washington, DC: ASM Press; 2002.

    Google Scholar 

  2. Theel ES, Carpenter AB, Binnicker MJ. Immunoassays for the diagnosis of infectious diseases. 11th ed. Washington, DC: ASP Press; 2015.

    Google Scholar 

  3. Hage DS. Immunoassays. Anal Chem. 1999;71:294R–304R.

    Article  CAS  Google Scholar 

  4. Peruski AH, Peruski LF Jr. Immunological methods for detection and identification of infectious disease and biological warfare agents. Clin Diagn Lab Immunol. 2003;10:506–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Billingsley MM, Riley RS, Day ES. Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods. PLoS One. 2017;12:e0177592.

    Article  Google Scholar 

  6. Hu B, Li J, Mou L, et al. An automated and portable microfluidic chemiluminescence immunoassay for quantitative detection of biomarkers. Lab Chip. 2017;17:2225–34.

    Article  CAS  Google Scholar 

  7. Mehta PK, Dahiya B, Sharma S, et al. Immuno-PCR, a new technique for the serodiagnosis of tuberculosis. J Microbiol Methods. 2017;139:218–29.

    Article  CAS  Google Scholar 

  8. Khurshid S, Afzal M, Khalid R, Akhtar MW, Qazi MH. Potential of multi-component antigens for tuberculosis diagnosis. Biologicals. 2017;48:109–13.

    Article  CAS  Google Scholar 

  9. Xiong S, Zhou Y, Huang X, Yu R, Lai W, Xiong Y. Ultrasensitive direct competitive FLISA using highly luminescent quantum dot beads for tuning affinity of competing antigens to antibodies. Anal Chim Acta. 2017;972:94–101.

    Article  CAS  Google Scholar 

  10. Fang YS, Chen SY, Huang XJ, Wang LS, Wang HY, Wang JF. Simple approach for ultrasensitive electrochemical immunoassay of Clostridium difficile toxin B detection. Biosens Bioelectron. 2014;53:238–44.

    Article  CAS  Google Scholar 

  11. Su W, Gao X, Jiang L, Qin J. Microfluidic platform towards point-of-care diagnostics in infectious diseases. J Chromatogr A. 2015;1377:13–26.

    Article  CAS  Google Scholar 

  12. Shulman ST, Bisno AL, Clegg HW, et al. Clinical practice guideline for the diagnosis and management of group A streptococcal pharyngitis: 2012 update by the Infectious Diseases Society of America. Clin Infect Dis. 2012;55:1279–82.

    Article  CAS  Google Scholar 

  13. Sinclair A, Xie X, Teltscher M, Dendukuri N. Systematic review and meta-analysis of a urine-based pneumococcal antigen test for diagnosis of community-acquired pneumonia caused by Streptococcus pneumoniae. J Clin Microbiol. 2013;51:2303–10.

    Article  Google Scholar 

  14. Smith MD, Derrington P, Evans R, et al. Rapid diagnosis of bacteremic pneumococcal infections in adults by using the Binax NOW Streptococcus pneumoniae urinary antigen test: a prospective, controlled clinical evaluation. J Clin Microbiol. 2003;41:2810–3.

    Article  CAS  Google Scholar 

  15. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44(Suppl 2):S27–72.

    Article  CAS  Google Scholar 

  16. Mercante JW, Winchell JM. Current and emerging legionella diagnostics for laboratory and outbreak investigations. Clin Microbiol Rev. 2015;28:95–133.

    Article  CAS  Google Scholar 

  17. Edelstein PH, Luck C. Legionella. 11th ed. Washington, DC: ASM Press; 2015.

    Google Scholar 

  18. Planche TD, Davies KA, Coen PG, et al. Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection. Lancet Infect Dis. 2013;13:936–45.

    Article  Google Scholar 

  19. Polage CR, Gyorke CE, Kennedy MA, et al. Overdiagnosis of Clostridium difficile infection in the molecular test era. JAMA Intern Med. 2015;175:1792–801.

    Article  Google Scholar 

  20. Landry ML, Ferguson D, Topal J. Comparison of Simplexa universal direct PCR with cytotoxicity assay for diagnosis of Clostridium difficile infection: performance, cost, and correlation with disease. J Clin Microbiol. 2014;52:275–80.

    Article  Google Scholar 

  21. Burnham CA, Carroll KC. Diagnosis of Clostridium difficile infection: an ongoing conundrum for clinicians and for clinical laboratories. Clin Microbiol Rev. 2013;26:604–30.

    Article  CAS  Google Scholar 

  22. Eastwood K, Else P, Charlett A, Wilcox M. Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods. J Clin Microbiol. 2009;47:3211–7.

    Article  Google Scholar 

  23. Chromy B, Lee E, Changavi A, Trinh W, Sarma P, Abusali S, Sandlund J, Almazan A, Bartolome A, Bishop J. Ultra-sensitive Clostridium difficile toxin A/B assay in development for the Sgx Clarity System from Singulex ASM Microbe. New Orleans, 2017.

    Google Scholar 

  24. Malfertheiner P, Megraud F, O’Morain CA, et al. Management of Helicobacter pylori infection-the Maastricht V/Florence consensus report. Gut. 2017;66:6–30.

    Article  CAS  Google Scholar 

  25. Chey WD, Wong BC, Practice Parameters Committee of the American College of G. American College of Gastroenterology guideline on the management of Helicobacter pylori infection. Am J Gastroenterol. 2007;102:1808–25.

    Google Scholar 

  26. Gaydos C, Essig A. Chlamydiaceae. 11th ed. Washington, DC: ASM Press; 2015.

    Google Scholar 

  27. Gaydos C, Hardick J. Point of care diagnostics for sexually transmitted infections: perspectives and advances. Expert Rev Anti-Infect Ther. 2014;12:657–72.

    Article  CAS  Google Scholar 

  28. Kiska DL, Jones MC, Mangum ME, Orkiszewski D, Gilligan PH. Quality assurance study of bacterial antigen testing of cerebrospinal fluid. J Clin Microbiol. 1995;33:1141–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Baron EJ. Specimen collection, transport, and processing, bacteriology. 11th ed. Washington, DC: ASM Press; 2015.

    Google Scholar 

  30. Gould LH, Bopp C, Strockbine N, et al. Recommendations for diagnosis of Shiga toxin—producing Escherichia coli infections by clinical laboratories. MMWR Recomm Rep. 2009;58:1–14.

    PubMed  Google Scholar 

  31. Bryan A, Youngster I, McAdam AJ. Shiga toxin producing Escherichia coli. Clin Lab Med. 2015;35:247–72.

    Article  Google Scholar 

  32. Fitzgerald C, Patrick M, Gonzalez A, et al. Multicenter evaluation of clinical diagnostic methods for detection and isolation of Campylobacter spp. from stool. J Clin Microbiol. 2016;54:1209–15.

    Article  CAS  Google Scholar 

  33. Patterson TF, Thompson GR 3rd, Denning DW, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;63:e1–e60.

    Article  Google Scholar 

  34. Perfect JR, Dismukes WE, Dromer F, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin Infect Dis. 2010;50:291–322.

    Article  Google Scholar 

  35. Huang HR, Fan LC, Rajbanshi B, Xu JF. Evaluation of a new cryptococcal antigen lateral flow immunoassay in serum, cerebrospinal fluid and urine for the diagnosis of cryptococcosis: a meta-analysis and systematic review. PLoS One. 2015;10:e0127117.

    Article  Google Scholar 

  36. Tenforde MW, Wake R, Leeme T, Jarvis JN. HIV-associated cryptococcal meningitis: bridging the gap between developed and resource-limited settings. Curr Clin Micro Rpt. 2016;3:92–102.

    Article  Google Scholar 

  37. Cushion MT. Pneumocystis. 11th ed. Washington, DC: ASM Press; 2015.

    Google Scholar 

  38. Morris A, Norris KA. Colonization by Pneumocystis jirovecii and its role in disease. Clin Microbiol Rev. 2012;25:297–317.

    Article  CAS  Google Scholar 

  39. Cama VA, Mathison BA. Infections by Intestinal Coccidia and Giardia duodenalis. Clin Lab Med. 2015;35:423–44.

    Article  Google Scholar 

  40. Centers for Disease Control and Prevention NCfID, Division of Parasitic Diseases. Diagnostic procedures for stool specimens: detection of parasite antigens. https://www.cdc.gov/dpdx/diagnosticprocedures/stool/antigendetection.html. 26 Sept 2017.

  41. Ali IK. Intestinal amebae. Clin Lab Med. 2015;35:393–422.

    Article  Google Scholar 

  42. Stark D, van Hal S, Fotedar R, et al. Comparison of stool antigen detection kits to PCR for diagnosis of amebiasis. J Clin Microbiol. 2008;46:1678–81.

    Article  CAS  Google Scholar 

  43. Organization WH. Malaria Rapid Diagnostic Test Performance: summary results of WHO product testing of malaria RDTs: round 1–7 (2008–2016). http://apps.who.int/iris/bitstream/10665/258597/1/9789241512916-eng.pdf. 11 Oct 2017.

  44. Murray CK, Gasser RA Jr, Magill AJ, Miller RS. Update on rapid diagnostic testing for malaria. Clin Microbiol Rev. 2008;21:97–110.

    Article  Google Scholar 

  45. Weil GJ, Ramzy RM. Diagnostic tools for filariasis elimination programs. Trends Parasitol. 2007;23:78–82.

    Article  Google Scholar 

  46. Wanji S, Amvongo-Adjia N, Njouendou AJ, et al. Further evidence of the cross-reactivity of the Binax NOW(R) Filariasis ICT cards to non-Wuchereria bancrofti filariae: experimental studies with Loa loa and Onchocerca ochengi. Parasit Vectors. 2016;9:267.

    Article  Google Scholar 

  47. Slinger R, Milk R, Gaboury I, Diaz-Mitoma F. Evaluation of the QuickLab RSV test, a new rapid lateral-flow immunoassay for detection of respiratory syncytial virus antigen. J Clin Microbiol. 2004;42:3731–3.

    Article  CAS  Google Scholar 

  48. Wilhelmi I, Colomina J, Martin-Rodrigo D, Roman E, Sanchez-Fauquier A. New immunochromatographic method for rapid detection of rotaviruses in stool samples compared with standard enzyme immunoassay and latex agglutination techniques. Eur J Clin Microbiol Infect Dis. 2001;20:741–3.

    Article  CAS  Google Scholar 

  49. Tate JE, Mijatovic-Rustempasic S, Tam KI, et al. Comparison of 2 assays for diagnosing rotavirus and evaluating vaccine effectiveness in children with gastroenteritis. Emerg Infect Dis. 2013;19:1245–52.

    Article  Google Scholar 

  50. Barenfanger J, Drake C, Leon N, Mueller T, Troutt T. Clinical and financial benefits of rapid detection of respiratory viruses: an outcomes study. J Clin Microbiol. 2000;38:2824–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bonner AB, Monroe KW, Talley LI, Klasner AE, Kimberlin DW. Impact of the rapid diagnosis of influenza on physician decision-making and patient management in the pediatric emergency department: results of a randomized, prospective, controlled trial. Pediatrics. 2003;112:363–7.

    Article  Google Scholar 

  52. Jennings LC, Skopnik H, Burckhardt I, Hribar I, Del Piero L, Deichmann KA. Effect of rapid influenza testing on the clinical management of paediatric influenza. Influenza Other Respir Viruses. 2009;3:91–8.

    Article  Google Scholar 

  53. Landry ML. Diagnostic tests for influenza infection. Curr Opin Pediatr. 2011;23:91–7.

    Article  CAS  Google Scholar 

  54. Peaper DR, Landry ML. Rapid diagnosis of influenza: state of the art. Clin Lab Med. 2014;34:365–85.

    Article  Google Scholar 

  55. Sambol AR, Abdalhamid B, Lyden ER, Aden TA, Noel RK, Hinrichs SH. Use of rapid influenza diagnostic tests under field conditions as a screening tool during an outbreak of the 2009 novel influenza virus: practical considerations. J Clin Virol. 2010;47:229–33.

    Article  Google Scholar 

  56. Dale SE, Mayer C, Mayer MC, Menegus MA. Analytical and clinical sensitivity of the 3M rapid detection influenza A+B assay. J Clin Microbiol. 2008;46:3804–7.

    Article  Google Scholar 

  57. Leonardi GP, Wilson AM, Mitrache I, Zuretti AR. Comparison of the Sofia and Veritor direct antigen detection assay systems for identification of influenza viruses from patient nasopharyngeal specimens. J Clin Microbiol. 2015;53:1345–7.

    Article  CAS  Google Scholar 

  58. Dunn J, Obuekwe J, Baun T, Rogers J, Patel T, Snow L. Prompt detection of influenza A and B viruses using the BD Veritor System Flu A+B, Quidel(R) Sofia(R) Influenza A+B FIA, and Alere BinaxNOW(R) Influenza A&B compared to real-time reverse transcription-polymerase chain reaction (RT-PCR). Diagn Microbiol Infect Dis. 2014;79:10–3.

    Article  CAS  Google Scholar 

  59. Merckx J, Wali R, Schiller I, et al. Diagnostic accuracy of novel and traditional rapid tests for influenza infection compared with reverse transcriptase polymerase chain reaction: a systematic review and meta-analysis. Ann Intern Med. 2017;167:394–409.

    Article  Google Scholar 

  60. Stellrecht KA, Nattanmai SM, Butt J, et al. Effect of genomic drift of influenza PCR tests. J Clin Virol. 2017;93:25–9.

    Article  CAS  Google Scholar 

  61. Azar MM, Landry ML. Detection of Influenza A and B Viruses and Respiratory Syncytial Virus by Use of Clinical Laboratory Improvement Amendments of 1988 (CLIA)-Waived Point-of-Care Assays: a Paradigm Shift to Molecular Tests. J Clin Microbiol. 2018;56:e00367–18.

    Google Scholar 

  62. Landry ML, Ferguson D. Cytospin-enhanced immunofluorescence and impact of sample quality on detection of novel swine origin (H1N1) influenza virus. J Clin Microbiol. 2010;48:957–9.

    Article  Google Scholar 

  63. Landry ML. Developments in immunologic assays for respiratory viruses. Clin Lab Med. 2009;29:635–47.

    Article  Google Scholar 

  64. Landry ML, Ferguson D. SimulFluor respiratory screen for rapid detection of multiple respiratory viruses in clinical specimens by immunofluorescence staining. J Clin Microbiol. 2000;38:708–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pollock NR, Duong S, Cheng A, Han LL, Smole S, Kirby JE. Ruling out novel H1N1 influenza virus infection with direct fluorescent antigen testing. Clin Infect Dis. 2009;49:e66–8.

    Article  CAS  Google Scholar 

  66. Scicchitano LM, Shetterly B, Bourbeau PP. Evaluation of light diagnostics SimulFluor HSV/VZV immunofluorescence assay. Diagn Microbiol Infect Dis. 1999;35:205–8.

    Article  CAS  Google Scholar 

  67. Gitman MR, Ferguson D, Landry ML. Comparison of Simplexa HSV 1 & 2 PCR with culture, immunofluorescence, and laboratory-developed TaqMan PCR for detection of herpes simplex virus in swab specimens. J Clin Microbiol. 2013;51:3765–9.

    Article  CAS  Google Scholar 

  68. Landry ML, Ferguson D. 2-Hour cytomegalovirus pp65 antigenemia assay for rapid quantitation of cytomegalovirus in blood samples. J Clin Microbiol. 2000;38:427–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gerna G, Revello MG, Percivalle E, Morini F. Comparison of different immunostaining techniques and monoclonal antibodies to the lower matrix phosphoprotein (pp65) for optimal quantitation of human cytomegalovirus antigenemia. J Clin Microbiol. 1992;30:1232–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Branson BM. The future of HIV testing. J Acquir Immune Defic Syndr. 2010;55(Suppl 2):S102–5.

    Article  Google Scholar 

  71. Stafylis C, Klausner JD. Evaluation of two 4th generation point-of-care assays for the detection of Human Immunodeficiency Virus infection. PLoS One. 2017;12:e0183944.

    Article  Google Scholar 

  72. Masciotra S, Luo W, Youngpairoj AS, et al. Performance of the Alere Determine HIV-1/2 Ag/Ab Combo Rapid Test with specimens from HIV-1 seroconverters from the US and HIV-2 infected individuals from Ivory Coast. J Clin Virol. 2013;58(Suppl 1):e54–8.

    Article  CAS  Google Scholar 

  73. Huits R, Soentjens P, Maniewski-Kelner U, et al. Clinical utility of the nonstructural 1 antigen rapid diagnostic test in the management of dengue in returning travelers with fever. Open Forum Infect Dis. 2017;4:ofw273.

    Article  Google Scholar 

  74. Muller DA, Depelsenaire AC, Young PR. Clinical and laboratory diagnosis of dengue virus infection. J Infect Dis. 2017;215:S89–95.

    Article  Google Scholar 

  75. Bosch I, de Puig H, Hiley M, et al. Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Sci Transl Med. 2017;9:eaan1589.

    Article  Google Scholar 

  76. Talal AH, Chen Y, Zeremski M, et al. Hepatitis C virus core antigen: a potential alternative to HCV RNA testing among persons with substance use disorders. J Subst Abus Treat. 2017;78:37–42.

    Article  Google Scholar 

  77. Cohn J, Roberts T, Amorosa V, Lemoine M, Hill A. Simplified diagnostic monitoring for hepatitis C, in the new era of direct-acting antiviral treatment. Curr Opin HIV AIDS. 2015;10:369–73.

    Article  CAS  Google Scholar 

  78. Vanhommerig JW, van de Laar TJ, Koot M, et al. Evaluation of a hepatitis C virus (HCV) antigen assay for routine HCV screening among men who have sex with men infected with HIV. J Virol Methods. 2015;213:147–50.

    Article  CAS  Google Scholar 

  79. Laperche S, Nubling CM, Stramer SL, et al. Sensitivity of hepatitis C virus core antigen and antibody combination assays in a global panel of window period samples. Transfusion. 2015;55:2489–98.

    Article  CAS  Google Scholar 

  80. Peeling RW, Holmes KK, Mabey D, Ronald A. Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Infect. 2006;82(Suppl 5):v1–6.

    Article  Google Scholar 

  81. Peeling RW, Mabey D. Point-of-care tests for diagnosing infections in the developing world. Clin Microbiol Infect. 2010;16:1062–9.

    Article  CAS  Google Scholar 

  82. Drain PK, Hyle EP, Noubary F, et al. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect Dis. 2014;14:239–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie L. Landry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campbell, S., Landry, M.L. (2018). Rapid Microbial Antigen Tests. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-33900-9_5

Download citation

Publish with us

Policies and ethics