Skip to main content

Direct Nucleotide Sequencing for Amplification Product Identification

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology
  • 1271 Accesses

Abstract

Sanger sequencing technology remains an important technology for diagnostic microbiology. Pyrosequencing has simplified the procedure and makes rapid diagnoses possible. The following topics are discussed: (1) DNA sequence of hsp65 and recA gene sequence for identification of mycobacterial species, (2) DNA sequence of the internal transcribed spacer (ITS) region for bacterial and fungi identification, (3) nucleotide sequence of HIV and HCV for viral genome typing, and (4) sequence-based bacterial genome typing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.

    Article  CAS  Google Scholar 

  2. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci. 1977;74:560–4.

    Article  CAS  Google Scholar 

  3. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 3rd ed. New York: Cold Spring Harber Laboratory Press; 2000.

    Google Scholar 

  4. Ruano G, Kidd KK. Coupled amplification and sequencing of genomic DNA. Proc Natl Acad U S A. 1991;88:2815–9.

    Article  CAS  Google Scholar 

  5. Yager TD, Baron L, Batra R, Bouevitch A, Chan D, Chan K, Darasch S, Gilchrist R, Izmailov A, Lacroix J-M, Marchelleta K, Renfrew J, Rushlow D, Steinbach E, Ton C, Waterhouse P, Zaleski H, Dunn JM, Stevens J. High performance DNA sequencing, and the detection of mutations and polymorphisms, on the clipper sequencer. Electrophoresis. 1999;20:1280–300.

    Article  CAS  Google Scholar 

  6. Hance AJ, Grandchamp B, Le’vy-Fre’bault V, Lecossier D, Rauzier J, Bocart D, Gicquel B. Detection and identification of mycobacteria by amplification of mycobacterial DNA. Mol Microbiol. 1989;3:843–9.

    Article  CAS  Google Scholar 

  7. Plikaytis BB, Plikaytis BD, Yakrus A, Butler WR, Woodley CL, Silcox VA, Shinnick TM. Differentiation of slowly growing Mycobacterium species, including Mycobacterium tuberculosis, by gene amplification and restriction fragment length polymorphism analysis. J Clin Microbiol. 1992;30:1815–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Telenti A, Marchesi F, Balz M, Bally F, Böttger EC, Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol. 1993;31:175–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kapur V, Li LL, Hamrick MR, Plikaytis BB, Shinnick TM, Telenti A, Jacobs WR, Banerjee A, Cole S, Yuen KY, Clarridge JE, Kreiswirth BN, Musser JM. Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med. 1995;119:131–8.

    CAS  PubMed  Google Scholar 

  10. McNabb A, Eisler D, Adie K, Amos M, Rodrigues M, Stephens G, Black WA, Isaac-Renton J. Assessment of partial sequencing of the 65-Kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources. J Clin Microbiol. 2004;42:3000–11.

    Article  CAS  Google Scholar 

  11. Blackwood KS, He C, Gunton J, Turenne CY, Wolfe J, Kabani AM. Evaluation of recA sequences for identification of Mycobacterium species. J Clin Microbiol. 2000;38:2846–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Barry T, Colleran G, Glennon M, Dunican LK, Gannon F. The 16S/23S ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl. 1991;1:51–6.

    Article  CAS  Google Scholar 

  13. Gürtler V, Stanisich VA. New approaches to typing and identification of bacteria using 16S-23S rDNA spacer region. Microbiology. 1996;142:3–16.

    Article  Google Scholar 

  14. Garcia-Martinez J, Martinez-Murcia A, Anton AI, Rodriguez-Valera F. Comparison of the small 16S to 23S intergenic spacer region (ISR) of the rRNA operons of some Escherichia coli strains of the ECOR collection and E. coli K-12. J Bacteriol. 1996;178:6374–7.

    Article  CAS  Google Scholar 

  15. Couto I, Pereira S, Miragaia M, Sanches IS, de Lencastre H. Identification of clinical staphylococcal isolates from humans by internal transcribed spacer PCR. J Clin Microbiol. 2001;39:3099–103.

    Article  CAS  Google Scholar 

  16. Chen Y-C, Eisner JD, Kattar MM, Rassoulian-Barrett SL, Lafe K, Bui U, Limaye AP, Cookson BT. Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J Clin Microbiol. 2001;39:4042–51.

    Article  CAS  Google Scholar 

  17. De Smet AL, Brown IN, Yates M, Ivanyi J. Ribosomal internal transcribed spacers are identical among Mycobacterium avium-intracellulare complex isolates from AIDS patients, but vary among isolates from elderly pulmonary disease patients. Microbiology. 1995;141:2739–47.

    Article  Google Scholar 

  18. Frothingham R, Wilson KH. Sequence-based differentiation of strains in the Mycobacterium avium complex. J Bacteriol. 1993;175:2818–25.

    Article  CAS  Google Scholar 

  19. Rogall T, Wolters J, Floher T, Böttger EC. Towards a phylogeny and definition of the species at the molecular level within the genus Mycobacterium. Int J Syst Bacteriol. 1990;40:323–30.

    Article  CAS  Google Scholar 

  20. Roth A, Fischer M, Hamid HE, Ludwig W, Michalke S, Mauch H. Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J Clin Microbiol. 1998;36:139–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamid ME, Roth A, Landt O, Kroppenstedt RM, Goodfellow M, Mauch H. Differentiation between Mycobacterium farcinogenes and Mycobacterium senegalense strains based on 16S-23S ribosomal DNA internal transcribed spacer sequences. J Clin Microbiol. 2002;40:707–11.

    Article  CAS  Google Scholar 

  22. Chen CC, Teng LJ, Chang TC. Identification of clinically relevant Viridans group streptococci by sequence analysis of the 16S-23S ribosomal DNA spacer region. J Clin Microbiol. 2004;42:2651–7.

    Article  CAS  Google Scholar 

  23. Gürtler V, Barrie HD. Typing of Staphylococcus aureus strains by PCR-amplification of variable-length 16S-23S rDNA spacer regions: characterization of spacer sequences. Microbiology. 1995;141:1255–65.

    Article  Google Scholar 

  24. Forsman P, Tilsala-Timisja¨rvi A, Alatossava T. Identification of staphylococcal and streptococcal causes of bovine mastitis using 16S–23S rRNA spacer regions. Microbiology. 1997;143:3491–500.

    Article  CAS  Google Scholar 

  25. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gefland DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press, Inc; 1990. p. 315–22.

    Google Scholar 

  26. Chen YC, Eisner JD, Kattar MM, Rassoulian-Barrett SL, LaFe K, Yarfitz SL, Limaye AP, Cookson BT. Identification of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes J. Clin Microbiol. 2000;38:2302–10.

    CAS  Google Scholar 

  27. Travis H, Iwen PC, Hinrichs SH. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J Clin Microbiol. 2000;38:1510–5.

    Google Scholar 

  28. Guarro J, Gene J, Stchigel AM. Developments in fungal taxonomy. Clin Microbiol Rev. 1999;12:454–500.

    Article  CAS  Google Scholar 

  29. Lynch SM, Wu GY. Hepatitis C virus: a review of treatment guidelines, cost-effectiveness, and access to therapy. J Clin Transl Hepatol. 2016;4(4):310–9.

    PubMed  PubMed Central  Google Scholar 

  30. Smith DB, Bukh J, Kuiken C, Muerhoff AS, Rice CM, Stapleton JT, et al. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. Hepatology. 2014;59:318–27.

    Article  Google Scholar 

  31. Chueca N, Rivadulla I, Lovatti R, Reina G, Blanco A, Fernandez-Caballero JA, et al. Using NS5B sequencing for hepatitis C virus genotyping reveals discordances with commercial platforms. PLoS One. 2016;11(4):e0153754.

    Article  Google Scholar 

  32. Shopsin B, Kreiswirth BN. Molecular epidemiology of methicillin-resistant Staphylococcus aureus. Emerg Infect Dis. 2001;7:323–6.

    Article  CAS  Google Scholar 

  33. Shopsin B, Gomez M, Waddington M, Riehman M, Kreiswirth BN. Use of coagulase gene (coa) repeat region nucleotide sequences for typing of methicillin-resistant Staphylococcus aureus strains. J Clin Microbiol. 2000;38:3453–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Unemo M, Olce’n P, Jonasson J, Fredlund H. Molecular typing of Neisseria gonorrhoeae isolates by pyrosequencing of highly polymorphic segments of the porB gene. J Clin Microbiol. 2004;42:2926–34.

    Article  CAS  Google Scholar 

  35. Sinclair A, Arnold C, Woodford N. Rapid detection and estimation by pyrosequencing of 23S rrna genes with a single nucleotide polymorphism conferring linezolid resistance in enterococci. Antimicrob Agents Chemother. 2003;47:3620–2.

    Article  CAS  Google Scholar 

  36. Lindström A, Odeberg J, Albert J. Pyrosequencing for detection of lamivudine-resistant hepatitis B virus. J Clin Microbiol. 2004;42:4788–95.

    Article  Google Scholar 

  37. O’meara D, Wilbe K, Leitner T, Hejdeman B, Albert J, Lundeberg J. Monitoring resistance to human immunodeficiency virus type 1 protease inhibitors by pyrosequencing. J Clin Microbiol. 2001;39:464–73.

    Article  Google Scholar 

  38. Jordan JA, Butchko AR, Durso MB. Use of pyrosequencing of 16S rRNA fragments to differentiate between bacteria responsible for neonatal sepsis. J Mol Diagn. 2005;7:105–10.

    Article  CAS  Google Scholar 

  39. Adelson ME, Feola M, Trama J, Tilton RC, Mordechai E. Simultaneous detection of herpes simplex virus types 1 and 2 by real-time PCR and pyrosequencing. J Clin Virol. 2005;33(1):25–34.

    Article  CAS  Google Scholar 

  40. Tuohy MJ, Hall GS, Sholtis M, Procop GW. Pyrosequencing trade mark as a tool for the identification of common isolates of Mycobacterium sp. Diagn Microbiol Infect Dis. 2005;51:245–50.

    Article  CAS  Google Scholar 

  41. Haanpera M, Huovinen P, Jalava J. Detection and quantification of macrolide resistance mutations at positions 2058 and 2059 of the 23S rRNA gene by pyrosequencing. Antimicrob Agents Chemother. 2005;49:457–60.

    Article  Google Scholar 

  42. Gharizadeh B, Norberg E, Loffler J, Jalal S, Tollemar J, Einsele H, Klingspor L, Nyren P. Identification of medically important fungi by the pyrosequencing technology. Mycoses. 2004;47:29–33.

    Article  CAS  Google Scholar 

  43. Simen BB, Simons JF, Hullsiek KH, Novak RM, Macarther RD, Baxter JD, Hugan C, Lubeski C, Turenchalk GS, Braverman MS, Desany B, Rothberg JM, Egholm M, Kozai MJ, Beirn T, Community Programs for Clinical Research on AIDS. Low abundance drug-resistant viral variants in chronically HIV infected, antiretroviral treatment-naïve patients significantly impact treatment outcomes. J Infect Dis. 2009;199:610–2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, T. (2018). Direct Nucleotide Sequencing for Amplification Product Identification. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-33900-9_19

Download citation

Publish with us

Policies and ethics