Skip to main content

Molecular Typing Techniques: State of the Art

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology
  • 1274 Accesses

Abstract

The epidemiological analysis of healthcare-associated infections has seen remarkable progress in molecular approaches to bacterial strain typing. These advances stimulate understandable interest in the availability and use of the most sensitive and discriminating strain typing methods – the state of the art. Recent advances in strain typing employing whole-genome sequencing clearly constitute the latest “scientific” state of the art. However, there may be instances where older molecular approaches constitute a “functional” state of the art depending on available expertise and economic resources. This review considers a range of molecular strain typing methods, beginning with the older approaches that may still find useful application while acknowledging both the promise and the challenges associated with whole-genome sequence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tenover FC, Arbeit RD, Goering RV. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Infect Control Hosp Epidemiol. 1997;18:426–39.

    Article  CAS  Google Scholar 

  2. Chen Y, Brown E, Knabel SJ. Molecular epidemiology of foodborne pathogens. In: Wiedmann M, Zhang W, editors. Genomics of foodborne bacterial pathogens. New York: Springer; 2011. p. 403–53.

    Chapter  Google Scholar 

  3. Van Belkum A, Tassios PT, Dijkshoorn L, et al. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect. 2007;13(Suppl 3):1–46.

    Article  Google Scholar 

  4. Goering RV. The molecular epidemiology of nosocomial infection: past, present, and future. Rev Med Microbiol. 2000;11:145–52.

    Article  Google Scholar 

  5. Goering RV. Molecular strain typing for the clinical laboratory: current application and future direction. Clin Microbiol Newsl. 2000;22:169–73.

    Article  Google Scholar 

  6. Schurch AC, Arredondo-Alonso S, Willems RJL, Goering RV. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin Microbiol Infect. 2018;24:342–349.

    Article  Google Scholar 

  7. Lindsay JA. Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol. 2010;300:98–103.

    Article  CAS  Google Scholar 

  8. Goering RV, Kock R, Grundmann H, Werner G, Friedrich AW. From theory to practice: molecular strain typing for the clinical and public health setting. Euro Surveill. 2013;18:20383.

    Article  CAS  Google Scholar 

  9. Bialkowska-Hobrzanska H, Jaskot D, Hammerberg O. Evaluation of restriction endonuclease fingerprinting of chromosomal DNA and plasmid profile analysis for characterization of multiresistant coagulase-negative staphylococci in bacteremic neonates. J Clin Microbiol. 1990;28:269–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Huber CA, Foster NF, Riley TV, Paterson DL. Clostridium difficile typing methods: challenges for standardization. J Clin Microbiol. 2013;51:2810–4.

    Article  CAS  Google Scholar 

  11. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98:503–17.

    Article  CAS  Google Scholar 

  12. Thorne N, Borrell S, Evans J, et al. IS6110-based global phylogeny of Mycobacterium tuberculosis. Infect Genet Evol. 2011;11:132–8.

    Article  Google Scholar 

  13. Schwartz DC, Saffran W, Welsh J, Haas R, Goldenberg M, Cantor CR. New techniques for purifying large DNA’s and studying their properties and packaging. Cold Spring Harb Symp Quant Biol. 1983;47:189–95.

    Article  Google Scholar 

  14. Schwartz DC, Koval M. Conformational dynamics of individual DNA molecules during gel electrophoresis. Nature. 1989;338:520–2.

    Article  CAS  Google Scholar 

  15. Goering RV, Ribot EM, Gerner-Smidt P. Pulsed-field gel electrophoresis: laboratory and epidemiologic considerations for interpretation of data. In: Persing DH, Tenover FC, Tang YW, Nolte FS, Hayden RT, et al., editors. Molecular microbiology. 2nd ed. Washington, DC: ASM Press; 2011. p. 167–77.

    Chapter  Google Scholar 

  16. Goering RV. Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol. 2010;10:866–75.

    Article  CAS  Google Scholar 

  17. McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol. 2003;41:5113–20.

    Article  CAS  Google Scholar 

  18. Goering RV, McDougal LK, Fosheim GE, Bonnstetter KK, Wolter DJ, Tenover FC. Epidemiologic distribution of the arginine catabolic mobile element among selected methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates. J Clin Microbiol. 2007;45:1981–4.

    Article  CAS  Google Scholar 

  19. Goering RV, Stemper ME, Shukla SK, Foley SL. Restriction analysis techniques. In: Foley SL, Chen AY, Simjee S, Zervos MJ, editors. Molecular techniques for the study of hospital acquired infection. Hoboken: Wiley-Blackwell; 2011. p. 135–44.

    Chapter  Google Scholar 

  20. Melles DC, Schouls L, Francois P, et al. High-throughput typing of Staphylococcus aureus by amplified fragment length polymorphism (AFLP) or multi-locus variable number of tandem repeat analysis (MLVA) reveals consistent strain relatedness. Eur J Clin Microbiol Infect Dis. 2009;28:39–45.

    Article  CAS  Google Scholar 

  21. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19:6823–31.

    Article  CAS  Google Scholar 

  22. Van Belkum A, Sluijter M, De Groot R, Verbrugh H, Hermans PWM. Novel BOX repeat PCR assay for high-resolution typing of Streptococcus pneumoniae strains. J Clin Microbiol. 1996;34:1176–9.

    PubMed  PubMed Central  Google Scholar 

  23. Deplano A, Vaneechoutte M, Verschraegen G, Struelens MJ. Typing of Staphylococcus aureus and Staphylococcus epidermidis strains by PCR analysis of inter-IS256 spacer length polymorphisms. J Clin Microbiol. 1997;35:2580–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Frye SR, Healy M. Repetitive sequence-based PCR typing of bacteria and fungi. In: Persing DH, Tenover FC, Tang YW, Nolte FS, Hayden RT, Van Belkum A, editors. Molecular microbiology: diagnostic principles and practice. Washington, DC: ASM Press; 2011. p. 199–212.

    Chapter  Google Scholar 

  25. Ross TL, Merz WG, Farkosh M, Carroll KC. Comparison of an automated repetitive sequence-based PCR microbial typing system to pulsed-field gel electrophoresis for analysis of outbreaks of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2005;43:5642–7.

    Article  CAS  Google Scholar 

  26. Roussel S, Felix B, Colaneri C, et al. Semi-automated repetitive-sequence-based polymerase chain reaction compared to pulsed-field gel electrophoresis for Listeria monocytogenes subtyping. Foodborne Pathog Dis. 2010;7:1005–12.

    Article  CAS  Google Scholar 

  27. Aguadero V, Gonzalez VC, Vindel A, Gonzalez VM, Moreno JJ. Evaluation of rep-PCR/DiversiLab versus PFGE and spa typing in genotyping methicillin-resistant Staphylococcus aureus (MRSA). Br J Biomed Sci. 2015;72:120–7.

    Article  CAS  Google Scholar 

  28. Bouchet V, Huot H, Goldstein R. Molecular genetic basis of ribotyping. Clin Microbiol Rev. 2008;21:262–73.

    Article  CAS  Google Scholar 

  29. Tenover FC, Novak-Weekley S, Woods CW, et al. Impact of strain types on detection of toxigenic Clostridium difficile: comparison of molecular diagnostic and enzyme immunoassay approaches. J Clin Microbiol. 2010;48:3719–24.

    Article  Google Scholar 

  30. Valiente E, Dawson LF, Cairns MD, Stabler RA, Wren BW. Emergence of new PCR-ribotypes from the hypervirulent Clostridium difficile 027 lineage. J Med Microbiol. 2012;61:49–56.

    Article  CAS  Google Scholar 

  31. Solomon K, Fanning S, McDermott S, et al. PCR ribotype prevalence and molecular basis of macrolide-lincosamide-streptogramin B (MLSB) and fluoroquinolone resistance in Irish clinical Clostridium difficile isolates. J Antimicrob Chemother. 2011;66:1976–82.

    Article  CAS  Google Scholar 

  32. Gerding DN. Global epidemiology of Clostridium difficile infection in 2010. Infect Control Hosp Epidemiol. 2010;31(Suppl 1):S32–4.

    Article  Google Scholar 

  33. Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2000;44:1549–55.

    Article  CAS  Google Scholar 

  34. IWG-SCC. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother. 2009;53:4961–7.

    Article  Google Scholar 

  35. Kondo Y, Ito T, Ma XX, et al. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother. 2007;51:264–74.

    Article  CAS  Google Scholar 

  36. Milheirico C, Oliveira DC, De Lencastre H. Multiplex PCR strategy for subtyping the staphylococcal cassette chromosome mec type IV in methicillin-resistant Staphylococcus aureus: ‘SCCmec IV multiplex’. J Antimicrob Chemother. 2007;60:42–8.

    Article  CAS  Google Scholar 

  37. Oliveira DC, De Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46:2155–61.

    Article  CAS  Google Scholar 

  38. Deurenberg RH, Stobberingh EE. The evolution of Staphylococcus aureus. Infect Genet Evol. 2008;8:747–63.

    Article  CAS  Google Scholar 

  39. Van Belkum A, Scherer S, van Alphen L, Verbrugh H. Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev. 1998;62:275–93.

    PubMed  PubMed Central  Google Scholar 

  40. Lindstedt BA. Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis. 2005;26:2567–82.

    Article  CAS  Google Scholar 

  41. Hammerschmidt S, Muller A, Sillmann H, et al. Capsule phase variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the polysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreak of meningococcal disease. Mol Microbiol. 1996;20:1211–20.

    Article  CAS  Google Scholar 

  42. Pourcel C, Vergnaud G. Strain typing using multiple “variable number of tandem repeat” analysis and genetic element CRISPR. In: Persing DH, Tenover FC, Tang YW, Nolte FS, Hayden RT, Van Belkum A, editors. Molecular microbiology: diagnostic principles and practive. 2nd ed. Washington, DC: ASM Press; 2011. p. 179–97.

    Chapter  Google Scholar 

  43. Nadon CA, Trees E, Ng LK, et al. Development and application of MLVA methods as a tool for inter-laboratory surveillance. Euro Surveill. 2013;18(35):20565.

    Article  CAS  Google Scholar 

  44. Bannerman TL, Hancock GA, Tenover FC, Miller JM. Pulsed-field gel electrophoresis as a replacement for bacteriophage typing of Staphylococcus aureus. J Clin Microbiol. 1995;33:551–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ribot EM, Hise KB. Future challenges for tracking foodborne diseases: PulseNet, a 20-year-old US surveillance system for foodborne diseases, is expanding both globally and technologically. EMBO Rep. 2016;17:1499–505.

    Article  CAS  Google Scholar 

  46. Harmsen D, Claus H, Witte W, et al. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol. 2003;41:5442–8.

    Article  CAS  Google Scholar 

  47. Church DL, Chow BL, Lloyd T, Gregson DB. Comparison of automated repetitive-sequence-based polymerase chain reaction and spa typing versus pulsed-field gel electrophoresis for molecular typing of methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis. 2011;69:30–7.

    Article  CAS  Google Scholar 

  48. Bessen DE. Population biology of the human restricted pathogen, Streptococcus pyogenes. Infect Genet Evol. 2009;9:581–93.

    Article  CAS  Google Scholar 

  49. Sanderson-Smith M, De Oliveira DM, Guglielmini J, et al. A systematic and functional classification of Streptococcus pyogenes that serves as a new tool for molecular typing and vaccine development. J Infect Dis. 2014;210:1325–38.

    Article  CAS  Google Scholar 

  50. Steer AC, Law I, Matatolu L, Beall BW, Carapetis JR. Global emm type distribution of group a streptococci: systematic review and implications for vaccine development. Lancet Infect Dis. 2009;9:611–6.

    Article  Google Scholar 

  51. Ryffel C, Bucher R, Kayser FH, Berger-Bächi B. The Staphylococcus aureus mec determinant comprises an unusual cluster of direct repeats and codes for a gene product similar to the Escherichia coli sn-glycerophosphoryl diester phosphodiesterase. J Bacteriol. 1991;173:7416–22.

    Article  CAS  Google Scholar 

  52. Ionescu R, Mediavilla JR, Chen L, et al. Molecular characterization and antibiotic susceptibility of Staphylococcus aureus from a multidisciplinary hospital in Romania. Microb Drug Resist. 2010;16:263–72.

    Article  CAS  Google Scholar 

  53. Goering RV, Morrison D, Al-Doori Z, Edwards GF, Gemmell CG. Usefulness of mec-associated direct repeat unit (dru) typing in the epidemiological analysis of highly clonal methicillin-resistant Staphylococcus aureus in Scotland. Clin Microbiol Infect. 2008;14:964–9.

    Article  CAS  Google Scholar 

  54. Fessler A, Scott C, Kadlec K, Ehricht R, Monecke S, Schwarz S. Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis. J Antimicrob Chemother. 2010;65:619–25.

    Article  CAS  Google Scholar 

  55. Shore AC, Rossney AS, Kinnevey PM, et al. Enhanced discrimination of highly clonal ST22-methicillin-resistant Staphylococcus aureus IV isolates achieved by combining spa, dru, and pulsed-field gel electrophoresis typing data. J Clin Microbiol. 2010;48:1839–52.

    Article  Google Scholar 

  56. Smyth DS, Wong A, Robinson DA. Cross-species spread of SCCmec IV subtypes in staphylococci. Infect Genet Evol. 2011;11:446–53.

    Article  Google Scholar 

  57. Smyth DS, McDougal LK, Gran FW, et al. Population structure of a hybrid clonal group of methicillin-resistant Staphylococcus aureus, ST239-MRSA-III. PLoS One. 2010;5:e8582.

    Article  Google Scholar 

  58. Maiden MCJ, Bygraves JA, Feil E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998;95:3140–5145.

    Article  CAS  Google Scholar 

  59. Feil EJ, Spratt BG. Recombination and the population structures of bacterial pathogens. Annu Rev Microbiol. 2001;55:561–90.

    Article  CAS  Google Scholar 

  60. Aanensen DM, Spratt BG. The multilocus sequence typing network: mlst.net. Nucleic Acids Res. 2005;33(Web Server issue):W728–33.

    Article  CAS  Google Scholar 

  61. Yan Y, Cui Y, Han H, et al. Extended MLST-based population genetics and phylogeny of Vibrio parahaemolyticus with high levels of recombination. Int J Food Microbiol. 2011;145:106–12.

    Article  CAS  Google Scholar 

  62. Ch'ng SL, Octavia S, Xia Q, et al. Population structure and evolution of pathogenicity of Yersinia pseudotuberculosis. Appl Environ Microbiol. 2011;77:768–75.

    Article  CAS  Google Scholar 

  63. Litrup E, Torpdahl M, Malorny B, Huehn S, Christensen H, Nielsen EM. Association between phylogeny, virulence potential and serovars of Salmonella enterica. Infect Genet Evol. 2010;10:1132–9.

    Article  Google Scholar 

  64. Miller MB, Tang YW. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev. 2009;22:611–33.

    Article  CAS  Google Scholar 

  65. Musser JM, Shelburne SA III. A decade of molecular pathogenomic analysis of group a Streptococcus. J Clin Invest. 2009;119:2455–63.

    Article  CAS  Google Scholar 

  66. Li W, Raoult D, Fournier PE. Bacterial strain typing in the genomic era. FEMS Microbiol Rev. 2009;33:892–916.

    Article  CAS  Google Scholar 

  67. Matussek A, Jernberg C, Einemo IM, et al. Genetic makeup of Shiga toxin-producing Escherichia coli in relation to clinical symptoms and duration of shedding: a microarray analysis of isolates from Swedish children. Eur J Clin Microbiol Infect Dis. 2017;36:1433–41.

    Article  CAS  Google Scholar 

  68. Blomfeldt A, Aamot HV, Eskesen AN, et al. DNA microarray analysis of Staphylococcus aureus causing bloodstream infection: bacterial genes associated with mortality? Eur J Clin Microbiol Infect Dis. 2016;35:1285–95.

    Article  CAS  Google Scholar 

  69. Driscoll JR. Spoligotyping for molecular epidemiology of the Mycobacterium tuberculosis complex. Methods Mol Biol. 2009;551:117–28.

    Article  CAS  Google Scholar 

  70. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.

    Article  CAS  Google Scholar 

  71. Heather JM, Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics. 2016;107:1–8.

    Article  CAS  Google Scholar 

  72. Carrico JA, Rossi M, Moran-Gilad J, Van DG, Ramirez M. A primer on microbial bioinformatics for nonbioinformaticians. Clin Microbiol Infect. 2018;24:342–49.

    Article  Google Scholar 

  73. Spinali S, van BA, Goering RV, et al. Microbial typing by matrix-assisted laser desorption ionization-time of flight mass spectrometry: do we need guidance for data interpretation? J Clin Microbiol. 2015;53:760–5.

    Article  CAS  Google Scholar 

  74. Moura H, Woolfitt AR, Carvalho MG, et al. MALDI-TOF mass spectrometry as a tool for differentiation of invasive and noninvasive Streptococcus pyogenes isolates. FEMS Immunol Med Microbiol. 2008;53:333–42.

    Article  CAS  Google Scholar 

  75. Wolters M, Rohde H, Maier T, et al. MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int J Med Microbiol. 2011;301:64–8.

    Article  CAS  Google Scholar 

  76. Williamson YM, Moura H, Woolfitt AR, et al. Differentiation of Streptococcus pneumoniae conjunctivitis outbreak isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2008;74:5891–7.

    Article  CAS  Google Scholar 

  77. Dieckmann R, Malorny B. Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2011;77:4136–46.

    Article  CAS  Google Scholar 

  78. Rademaker JL, Savelkoul P. PCR amplification-based microbial typing. In: Persing DH, Tenover FC, Versalovic J, Tang YW, Unger ER, Relman DA, et al., editors. Molecular microbiology: diagnostic principles and practice. Washington, DC: ASM Press; 2004. p. 197–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard V. Goering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goering, R.V. (2018). Molecular Typing Techniques: State of the Art. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-33900-9_15

Download citation

Publish with us

Policies and ethics