Skip to main content

MALDI-TOF Mass Spectrometry-Based Microbial Identification and Beyond

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology

Abstract

Rapid and accurate species identification of bacteria, fungi, and viruses is a fundamental requirement in clinical and food microbiology and other fields of diagnostic microbiology. The introduction of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of prokaryotic and eukaryotic pathogens in microbial laboratories during recent years. This chapter provides a short technical overview about the principles of mass spectrometry, in particular MALDI-TOF MS. Furthermore, it will address the crucial points in diagnostics, i.e., speed, accuracy, and reproducibility of diagnostic results in comparison with customary methods, as well as current limitations of the technology. Finally, recent efforts to apply MALDI-TOF MS for antimicrobial susceptibility testing are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Riordan P, Schwab U, Logan S, et al. Rapid molecular detection of rifampicin resistance facilitates early diagnosis and treatment of multi-drug resistant tuberculosis: case control study. PLoS One. 2008;3:e3173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Park BS, Park YJ, Kim YJ, et al. A case of disseminated Nocardia farcinica diagnosed through DNA sequencing in a kidney transplantation patient. Clin Nephrol. 2008;70:542–5.

    CAS  PubMed  Google Scholar 

  3. Harbarth S, Masuet-Aumatell C, Schrenzel J, et al. Evaluation of rapid screening and pre-emptive contact isolation for detecting and controlling methicillin-resistant Staphylococcus aureus in critical care: an interventional cohort study. Crit Care. 2006;10:R25.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–96.

    Article  PubMed  Google Scholar 

  5. O’Hara CM. Manual and automated instrumentation for identification of Enterobacteriaceae and other aerobic gram-negative bacilli. Clin Microbiol Rev. 2005;18:147–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bergey DHG, G.M. Volume 2: the Proteobacteria. Berlin: Springer; 2005.

    Google Scholar 

  7. Gilligan PH. Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev. 1991;4:35–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clarridge JE 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev. 2004;17:840–62. table of contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harmsen DK, H. 16S rDNA for diagnosing pathogens: a living tree. ASM News. 2004;70:19–24.

    Google Scholar 

  10. Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet. 2012;13:601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Groth I, Schumann P, Martin K, et al. Ornithinicoccus hortensis gen. Nov., sp. nov., a soil actinomycete which contains L-ornithine. Int J Syst Bacteriol. 1999;49(Pt 4):1717–24.

    Article  CAS  PubMed  Google Scholar 

  12. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol. 1995;45:682–92.

    Article  CAS  PubMed  Google Scholar 

  13. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol. 1982;16:584–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dudley E, Bond L. Mass spectrometry analysis of nucleosides and nucleotides. Mass Spectrom Rev. 2014;33:302–31.

    Article  CAS  PubMed  Google Scholar 

  15. Huber CG, Oberacher H. Analysis of nucleic acids by on-line liquid chromatography-mass spectrometry. Mass Spectrom Rev. 2001;20:310–43.

    Article  CAS  PubMed  Google Scholar 

  16. Ahn YH, Kim JY, Yoo JS. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods. Mass Spectrom Rev. 2015;34:148–65.

    Article  CAS  PubMed  Google Scholar 

  17. Wang H, Hanash S. Intact-protein based sample preparation strategies for proteome analysis in combination with mass spectrometry. Mass Spectrom Rev. 2005;24:413–26.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Q, Li Z, Wang Y, Zheng Q, Li J. Mass spectrometry for protein sialoglycosylation. Mass Spectrom Rev. 2017. (https://doi.org/10.1002/mas.21555. [Epub ahead of print]).

    Article  CAS  PubMed  Google Scholar 

  19. Müthing J, Distler U. Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. Mass Spectrom Rev. 2010;29:425–79.

    PubMed  Google Scholar 

  20. Fuchs B. Analysis of phospholipids and glycolipids by thin-layer chromatography-matrix-assisted laser desorption and ionization mass spectrometry. J Chromatogr A. 2012;1259:62–73.

    Article  CAS  PubMed  Google Scholar 

  21. Soltwisch J, Kettling H, Vens-Cappell S, Wiegelmann M, Müthing J, Dreisewerd K. Mass spectrometry imaging with laser-induced postionization. Science. 2015;348:211–5.

    Article  CAS  PubMed  Google Scholar 

  22. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988;60:2299–301.

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka K, Waki H, Ido Y, Akita Y, Yoshida Y, Yoshida T, Matsuo T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2:151–3.

    Article  CAS  Google Scholar 

  24. Hillenkamp F, Peter-Katalinic J. MALDI MS. A practical guide to instrumentation, methods and applications. Wiley-VCH: Weinheim; 2007.

    Google Scholar 

  25. Dreisewerd K. The desorption process in MALDI. Chem Rev. 2003;103:395–426.

    Article  CAS  PubMed  Google Scholar 

  26. Hall TA, Budowle B, Jiang Y, et al. Base composition analysis of human mitochondrial DNA using electrospray ionization mass spectrometry: a novel tool for the identification and differentiation of humans. Anal Biochem. 2005;344:53–69.

    Article  CAS  PubMed  Google Scholar 

  27. Muddiman DC, Anderson GA, Hofstadler SA, Smith RD. Length and base composition of PCR-amplified nucleic acids using mass measurements from electrospray ionization mass spectrometry. Anal Chem. 1997;69:1543–9.

    Article  CAS  PubMed  Google Scholar 

  28. Claydon MA, Davey SN, Edwards-Jones V, Gordon DB. The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol. 1996;14:1584–6.

    Article  CAS  PubMed  Google Scholar 

  29. Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev. 2001;20:157–71.

    Article  CAS  PubMed  Google Scholar 

  30. Holland RD, Wilkes JG, Rafii F, et al. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1996;10:1227–32.

    Article  CAS  PubMed  Google Scholar 

  31. Krishnamurthy T, Ross PL, Rajamani U. Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1996;10:883–8.

    Article  CAS  PubMed  Google Scholar 

  32. Smole SC, King LA, Leopold PE, Arbeit RD. Sample preparation of gram-positive bacteria for identification by matrix assisted laser desorption/ionization time-of-flight. J Microbiol Methods. 2002;48:107–15.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Z, Russon L, Li L, Roser DC, Long SR. Investigation of spectral reproducibility in direct analysis of bacteria proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1998;12:456–64.

    Article  CAS  PubMed  Google Scholar 

  34. Suh MJ, Hamburg DM, Gregory ST, Dahlberg AE, Limbach PA. Extending ribosomal protein identifications to unsequenced bacterial strains using matrix-assisted laser desorption/ionization mass spectrometry. Proteomics. 2005;5:4818–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maier AK, M. Fast and reliable MALDI-TOF MS-based microorganism identification. Chem Today. 2007;25:68–71.

    CAS  Google Scholar 

  36. Carbonnelle E, Beretti JL, Cottyn S, et al. Rapid identification of Staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2007;45:2156–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mellmann A, Cloud J, Maier T, et al. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol. 2008;46:1946–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vargha M, Takats Z, Konopka A, Nakatsu CH. Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. J Microbiol Methods. 2006;66:399–409.

    Article  CAS  PubMed  Google Scholar 

  39. Liu H, Du Z, Wang J, Yang R. Universal sample preparation method for characterization of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2007;73:1899–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arnold RJ, Reilly JP. Fingerprint matching of E. coli strains with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of whole cells using a modified correlation approach. Rapid Commun Mass Spectrom. 1998;12:630–6.

    Article  CAS  PubMed  Google Scholar 

  41. Jarman KH, Daly DS, Petersen CE, Saenz AJ, Valentine NB, Wahl KL. Extracting and visualizing matrix-assisted laser desorption/ionization time-of-flight mass spectral fingerprints. Rapid Commun Mass Spectrom. 1999;13:1586–94.

    Article  CAS  PubMed  Google Scholar 

  42. Jarman KH, Cebula ST, Saenz AJ, et al. An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2000;72:1217–23.

    Article  CAS  PubMed  Google Scholar 

  43. Pineda FJ, Lin JS, Fenselau C, Demirev PA. Testing the significance of microorganism identification by mass spectrometry and proteome database search. Anal Chem. 2000;72:3739–44.

    Article  CAS  PubMed  Google Scholar 

  44. Bright JJ, Claydon MA, Soufian M, Gordon DB. Rapid typing of bacteria using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry and pattern recognition software. J Microbiol Methods. 2002;48:127–38.

    Article  CAS  PubMed  Google Scholar 

  45. Veloo AC, Knoester M, Degener JE, Kuijper EJ. Comparison of two matrix-assisted laser desorption ionisation-time of flight mass spectrometry methods for the identification of clinically relevant anaerobic bacteria. Clin Microbiol Infect. 2011;17:1501–6.

    Article  CAS  PubMed  Google Scholar 

  46. Porte L, Garcia P, Braun S, et al. Head-to-head comparison of Microflex LT and Vitek MS systems for routine identification of microorganisms by MALDI-TOF mass spectrometry in Chile. PLoS One. 2017;12:e0177929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pence MA, McElvania TeKippe E, Wallace MA, Burnham CA. Comparison and optimization of two MALDI-TOF MS platforms for the identification of medically relevant yeast species. Eur J Clin Microbiol Infect Dis. 2014;33:1703–12.

    Article  CAS  PubMed  Google Scholar 

  48. McElvania TeKippe E, Burnham CA. Evaluation of the Bruker Biotyper and VITEK MS MALDI-TOF MS systems for the identification of unusual and/or difficult-to-identify microorganisms isolated from clinical specimens. Eur J Clin Microbiol Infect Dis. 2014;33:2163–71.

    Article  CAS  PubMed  Google Scholar 

  49. Martiny D, Busson L, Wybo I, El Haj RA, Dediste A, Vandenberg O. Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2012;50:1313–25.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Levesque S, Dufresne PJ, Soualhine H, et al. A side by side comparison of Bruker Biotyper and VITEK MS: utility of MALDI-TOF MS technology for microorganism identification in a public health reference laboratory. PLoS One. 2015;10:e0144878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Karpanoja P, Harju I, Rantakokko-Jalava K, Haanpera M, Sarkkinen H. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of viridans group streptococci. Eur J Clin Microbiol Infect Dis. 2014;33:779–88.

    Article  CAS  PubMed  Google Scholar 

  52. Justesen US, Holm A, Knudsen E, et al. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems. J Clin Microbiol. 2011;49:4314–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jamal W, Albert MJ, Rotimi VO. Real-time comparative evaluation of bioMerieux VITEK MS versus Bruker Microflex MS, two matrix-assisted laser desorption-ionization time-of-flight mass spectrometry systems, for identification of clinically significant bacteria. BMC Microbiol. 2014;14:289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Fang H, Ohlsson AK, Ullberg M, Ozenci V. Evaluation of species-specific PCR, Bruker MS, VITEK MS and the VITEK 2 system for the identification of clinical Enterococcus isolates. Eur J Clin Microbiol Infect Dis. 2012;31:3073–7.

    Article  CAS  PubMed  Google Scholar 

  55. Deak E, Charlton CL, Bobenchik AM, et al. Comparison of the Vitek MS and Bruker Microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory. Diagn Microbiol Infect Dis. 2015;81:27–33.

    Article  CAS  PubMed  Google Scholar 

  56. Cherkaoui A, Hibbs J, Emonet S, et al. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol. 2010;48:1169–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Agergaard CN, Knudsen E, Dargis R, Nielsen XC, Christensen JJ, Justesen US. Species identification of Streptococcus bovis group isolates causing bacteremia: a comparison of two MALDI-TOF MS systems. Diagn Microbiol Infect Dis. 2017;88:23–5.

    Article  CAS  PubMed  Google Scholar 

  58. Harmsen D, Rothganger J, Frosch M, Albert J. RIDOM: ribosomal differentiation of medical micro-organisms database. Nucleic Acids Res. 2002;30:416–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pailhories H, Daure S, Eveillard M, Joly-Guillou ML, Kempf M. Using Vitek MALDI-TOF mass spectrometry to identify species belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii complex: a relevant alternative to molecular biology? Diagn Microbiol Infect Dis. 2015;83:99–104.

    Article  CAS  PubMed  Google Scholar 

  60. Donohue MJ, Smallwood AW, Pfaller S, Rodgers M, Shoemaker JA. The development of a matrix-assisted laser desorption/ionization mass spectrometry-based method for the protein fingerprinting and identification of Aeromonas species using whole cells. J Microbiol Methods. 2006;65:380–9.

    Article  CAS  PubMed  Google Scholar 

  61. Coltella L, Mancinelli L, Onori M, et al. Advancement in the routine identification of anaerobic bacteria by MALDI-TOF mass spectrometry. Eur J Clin Microbiol Infect Dis. 2013;32:1183–92.

    Article  CAS  PubMed  Google Scholar 

  62. Fedorko DP, Drake SK, Stock F, Murray PR. Identification of clinical isolates of anaerobic bacteria using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Eur J Clin Microbiol Infect Dis. 2012;31:2257–62.

    Article  CAS  PubMed  Google Scholar 

  63. Grosse-Herrenthey A, Maier T, Gessler F, et al. Challenging the problem of clostridial identification with matrix-assisted laser desorption and ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Anaerobe. 2008;14:242–9.

    Article  CAS  PubMed  Google Scholar 

  64. La Scola B, Fournier PE, Raoult D. Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era. Anaerobe. 2011;17:106–12.

    Article  PubMed  CAS  Google Scholar 

  65. Nagy E, Maier T, Urban E, Terhes G, Kostrzewa M, Bacteria ESGoARiA. Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2009;15:796–802.

    Article  CAS  PubMed  Google Scholar 

  66. Shah HN, Keys CJ, Schmid O, Gharbia SE. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and proteomics: a new era in anaerobic microbiology. Clin Infect Dis. 2002;35:S58–64.

    Article  CAS  PubMed  Google Scholar 

  67. Stingu CS, Rodloff AC, Jentsch H, Schaumann R, Eschrich K. Rapid identification of oral anaerobic bacteria cultivated from subgingival biofilm by MALDI-TOF-MS. Oral Microbiol Immunol. 2008;23:372–6.

    Article  CAS  PubMed  Google Scholar 

  68. Veloo AC, Erhard M, Welker M, Welling GW, Degener JE. Identification of Gram-positive anaerobic cocci by MALDI-TOF mass spectrometry. Syst Appl Microbiol. 2011;34:58–62.

    Article  CAS  PubMed  Google Scholar 

  69. Veloo AC, Welling GW, Degener JE. The identification of anaerobic bacteria using MALDI-TOF MS. Anaerobe. 2011;17:211–2.

    Article  CAS  PubMed  Google Scholar 

  70. Hotta Y, Sato J, Sato H, Hosoda A, Tamura H. Classification of the genus Bacillus based on MALDI-TOF MS analysis of ribosomal proteins coded in S10 and spc operons. J Agric Food Chem. 2011;59:5222–30.

    Article  CAS  PubMed  Google Scholar 

  71. Culebras E, Rodriguez-Avial I, Betriu C, Gomez M, Picazo JJ. Rapid identification of clinical isolates of Bacteroides species by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Anaerobe. 2012;18:163–5.

    Article  CAS  PubMed  Google Scholar 

  72. Fournier PE, Couderc C, Buffet S, Flaudrops C, Raoult D. Rapid and cost-effective identification of Bartonella species using mass spectrometry. J Med Microbiol. 2009;58:1154–9.

    Article  CAS  PubMed  Google Scholar 

  73. Ferreira L, Vega Castano S, Sanchez-Juanes F, et al. Identification of Brucella by MALDI-TOF mass spectrometry. Fast and reliable identification from agar plates and blood cultures. PLoS ONE. 2010;5:e14235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lista F, Reubsaet FA, De Santis R, et al. Reliable identification at the species level of Brucella isolates with MALDI-TOF-MS. BMC Microbiol. 2011;11:267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alispahic M, Hummel K, Jandreski-Cvetkovic D, et al. Species-specific identification and differentiation of Arcobacter, Helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis. J Med Microbiol. 2010;59:295–301.

    Article  CAS  PubMed  Google Scholar 

  76. Bessede E, Solecki O, Sifre E, Labadi L, Megraud F. Identification of Campylobacter species and related organisms by matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Clin Microbiol Infect. 2011;17:1735–9.

    Article  CAS  PubMed  Google Scholar 

  77. Mandrell RE, Harden LA, Bates A, Miller WG, Haddon WF, Fagerquist CK. Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2005;71:6292–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Winkler MA, Uher J, Cepa S. Direct analysis and identification of Helicobacter and Campylobacter species by MALDI-TOF mass spectrometry. Anal Chem. 1999;71:3416–9.

    Article  CAS  PubMed  Google Scholar 

  79. Wallet F, Loiez C, Decoene C, Courcol R. Rapid identification of Cardiobacterium hominis by MALDI-TOF mass spectrometry during infective endocarditis. Jpn J Infect Dis. 2011;64:327–9.

    PubMed  Google Scholar 

  80. Zaluga J, Heylen K, Van Hoorde K, et al. GyrB sequence analysis and MALDI-TOF MS as identification tools for plant pathogenic Clavibacter. Syst Appl Microbiol. 2011;34:400–7.

    Article  CAS  PubMed  Google Scholar 

  81. Konrad R, Berger A, Huber I, et al. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheria-associated bacteria. Euro Surveill. 2010;15:19699

    Google Scholar 

  82. Hernychova L, Toman R, Ciampor F, et al. Detection and identification of Coxiella burnetii based on the mass spectrometric analyses of the extracted proteins. Anal Chem. 2008;80:7097–104.

    Article  CAS  PubMed  Google Scholar 

  83. Conway GC, Smole SC, Sarracino DA, Arbeit RD, Leopold PE. Phyloproteomics: species identification of Enterobacteriaceae using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mol Microbiol Biotechnol. 2001;3:103–12.

    CAS  PubMed  Google Scholar 

  84. Lynn EC, Chung MC, Tsai WC, Han CC. Identification of Enterobacteriaceae bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun Mass Spectrom. 1999;13:2022–7.

    Article  CAS  PubMed  Google Scholar 

  85. Saffert RT, Cunningham SA, Ihde SM, Jobe KE, Mandrekar J, Patel R. Comparison of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometer to BD Phoenix automated microbiology system for identification of gram-negative bacilli. J Clin Microbiol. 2011;49:887–92.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Alispahic M, Christensen H, Hess C, Razzazi-Fazeli E, Bisgaard M, Hess M. Identification of Gallibacterium species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry evaluated by multilocus sequence analysis. Int J Med Microbiol. 2011;301:513–22.

    Article  CAS  PubMed  Google Scholar 

  87. Couturier MR, Mehinovic E, Croft AC, Fisher MA. Identification of HACEK clinical isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49:1104–6.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Schulthess B, Bloemberg GV, Zbinden A, et al. Evaluation of the Bruker MALDI Biotyper for identification of fastidious Gram-negative rods. J Clin Microbiol. 2016;54:543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Haag AM, Taylor SN, Johnston KH, Cole RB. Rapid identification and speciation of Haemophilus bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom. 1998;33:750–6.

    Article  CAS  PubMed  Google Scholar 

  90. Mazzeo MF, Sorrentino A, Gaita M, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the discrimination of food-borne microorganisms. Appl Environ Microbiol. 2006;72:1180–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gaia V, Casati S, Tonolla M. Rapid identification of Legionella spp. by MALDI-TOF MS based protein mass fingerprinting. Syst Appl Microbiol. 2011;34:40–4.

    Article  CAS  PubMed  Google Scholar 

  92. He Y, Chang TC, Li H, Shi G, Tang YW. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and database for identification of Legionella species. Can J Microbiol. 2011;57:533–8.

    Google Scholar 

  93. Moliner C, Ginevra C, Jarraud S, et al. Rapid identification of Legionella species by mass spectrometry. J Med Microbiol. 2010;59:273–84.

    Article  CAS  PubMed  Google Scholar 

  94. Barbuddhe SB, Maier T, Schwarz G, et al. Rapid identification and typing of listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2008;74:5402–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bouakaze C, Keyser C, Gonzalez A, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based single nucleotide polymorphism genotyping assay using iPLEX gold technology for identification of Mycobacterium tuberculosis complex species and lineages. J Clin Microbiol. 2011;49:3292–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hettick JM, Kashon ML, Slaven JE, et al. Discrimination of intact mycobacteria at the strain level: a combined MALDI-TOF MS and biostatistical analysis. Proteomics. 2006;6:6416–25.

    Article  CAS  PubMed  Google Scholar 

  97. Lotz A, Ferroni A, Beretti JL, et al. Rapid identification of mycobacterial whole cells in solid and liquid culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010;48:4481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pignone M, Greth KM, Cooper J, Emerson D, Tang J. Identification of mycobacteria by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. J Clin Microbiol. 2006;44:1963–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Saleeb PG, Drake SK, Murray PR, Zelazny AM. Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49:1790–4.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Tseng SP, Teng SH, Lee PS, Wang CF, Yu JS, Lu PL. Rapid identification of M. abscessus and M. massiliense by MALDI-TOF mass spectrometry with a comparison to sequencing methods and antimicrobial susceptibility patterns. Future Microbiol. 2013;8:1381–9.

    Article  CAS  PubMed  Google Scholar 

  101. Verroken A, Janssens M, Berhin C, et al. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nocardia species. J Clin Microbiol. 2010;48:4015–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Degand N, Carbonnelle E, Dauphin B, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis patients. J Clin Microbiol. 2008;46:3361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jacquier H, Carbonnelle E, Corvec S, et al. Revisited distribution of nonfermenting Gram-negative bacilli clinical isolates. Eur J Clin Microbiol Infect Dis. 2011;30:1579–86.

    Article  CAS  PubMed  Google Scholar 

  104. Marko DC, Saffert RT, Cunningham SA, et al. Evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of nonfermenting gram-negative bacilli isolated from cultures from cystic fibrosis patients. J Clin Microbiol. 2012;50:2034–9.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Vanlaere E, Sergeant K, Dawyndt P, et al. Matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry of intact cells allows rapid identification of Burkholderia cepacia complex. J Microbiol Methods. 2008;75:279–86.

    Article  CAS  PubMed  Google Scholar 

  106. Rezzonico F, Vogel G, Duffy B, Tonolla M. Application of whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification and clustering analysis of pantoea species. Appl Environ Microbiol. 2010;76:4497–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kolinska R, Drevinek M, Aldova E, Zemlickova H. Identification of Plesiomonas spp.: serological and MALDI-TOF MS methods. Folia Microbiol (Praha). 2010;55:669–72.

    Article  CAS  Google Scholar 

  108. Dieckmann R, Helmuth R, Erhard M, Malorny B. Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2008;74:7767–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dieckmann R, Malorny B. Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2011;77:4136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sparbier K, Weller U, Boogen C, Kostrzewa M. Rapid detection of Salmonella sp. by means of a combination of selective enrichment broth and MALDI-TOF MS. Eur J Clin Microbiol Infect Dis. 2012;31:767–73.

    Article  CAS  PubMed  Google Scholar 

  111. Bergeron M, Dauwalder O, Gouy M, et al. Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis. 2011;30:343–54.

    Article  CAS  PubMed  Google Scholar 

  112. Bernardo K, Pakulat N, Macht M, et al. Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics. 2002;2:747–53.

    Article  CAS  PubMed  Google Scholar 

  113. Carpaij N, Willems RJ, Bonten MJ, Fluit AC. Comparison of the identification of coagulase-negative staphylococci by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and tuf sequencing. Eur J Clin Microbiol Infect Dis. 2011;30:1169–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Decristophoris P, Fasola A, Benagli C, Tonolla M, Petrini O. Identification of Staphylococcus intermedius group by MALDI-TOF MS. Syst Appl Microbiol. 2011;34:45–51.

    Article  CAS  PubMed  Google Scholar 

  115. Dubois D, Leyssene D, Chacornac JP, et al. Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2010;48:941–5.

    Article  CAS  PubMed  Google Scholar 

  116. Dupont C, Sivadon-Tardy V, Bille E, et al. Identification of clinical coagulase-negative staphylococci, isolated in microbiology laboratories, by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and two automated systems. Clin Microbiol Infect. 2010;16:998–1004.

    Article  CAS  PubMed  Google Scholar 

  117. Elbehiry A, Al-Dubaib M, Marzouk E, Osman S, Edrees H. Performance of MALDI biotyper compared with Vitek 2 compact system for fast identification and discrimination of Staphylococcus species isolated from bovine mastitis. Microbiology. 2016;5:1061–70.

    CAS  Google Scholar 

  118. Rajakaruna L, Hallas G, Molenaar L, et al. High throughput identification of clinical isolates of Staphylococcus aureus using MALDI-TOF-MS of intact cells. Infect Genet Evol. 2009;9:507–13.

    Article  CAS  PubMed  Google Scholar 

  119. Vasileuskaya-Schulz Z, Kaiser S, Maier T, Kostrzewa M, Jonas D. Delineation of Stenotrophomonas spp. by multi-locus sequence analysis and MALDI-TOF mass spectrometry. Syst Appl Microbiol. 2011;34:35–9.

    Article  CAS  PubMed  Google Scholar 

  120. Cherkaoui A, Emonet S, Fernandez J, Schorderet D, Schrenzel J. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of Beta-hemolytic streptococci. J Clin Microbiol. 2011;49:3004–5.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Friedrichs C, Rodloff AC, Chhatwal GS, Schellenberger W, Eschrich K. Rapid identification of viridans streptococci by mass spectrometric discrimination. J Clin Microbiol. 2007;45:2392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hinse D, Vollmer T, Erhard M, et al. Differentiation of species of the Streptococcus bovis/equinus-complex by MALDI-TOF mass spectrometry in comparison to sodA sequence analyses. Syst Appl Microbiol. 2011;34:52–7.

    Article  CAS  PubMed  Google Scholar 

  123. Lartigue MF, Kostrzewa M, Salloum M, et al. Rapid detection of “highly virulent” Group B Streptococcus ST-17 and emerging ST-1 clones by MALDI-TOF mass spectrometry. J Microbiol Methods. 2011;86:262–5.

    Article  CAS  PubMed  Google Scholar 

  124. Rupf S, Breitung K, Schellenberger W, Merte K, Kneist S, Eschrich K. Differentiation of mutans streptococci by intact cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Oral Microbiol Immunol. 2005;20:267–73.

    Article  CAS  PubMed  Google Scholar 

  125. Dieckmann R, Strauch E, Alter T. Rapid identification and characterization of Vibrio species using whole-cell MALDI-TOF mass spectrometry. J Appl Microbiol. 2010;109:199–211.

    CAS  PubMed  Google Scholar 

  126. Ayyadurai S, Flaudrops C, Raoult D, Drancourt M. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. BMC Microbiol. 2010;10:285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Lasch P, Drevinek M, Nattermann H, et al. Characterization of Yersinia using MALDI-TOF mass spectrometry and chemometrics. Anal Chem. 2010;82:8464–75.

    Article  CAS  PubMed  Google Scholar 

  128. Stephan R, Cernela N, Ziegler D, et al. Rapid species specific identification and subtyping of Yersinia enterocolitica by MALDI-TOF mass spectrometry. J Microbiol Methods. 2011;87:150–3.

    Article  CAS  PubMed  Google Scholar 

  129. Alanio A, Beretti JL, Dauphin B, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clin Microbiol Infect. 2011;17:750–5.

    Article  CAS  PubMed  Google Scholar 

  130. De Carolis E, Posteraro B, Lass-Florl C, et al. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2012;18:475–84.

    Article  PubMed  Google Scholar 

  131. Hettick JM, Green BJ, Buskirk AD, et al. Discrimination of Penicillium isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Rapid Commun Mass Spectrom. 2008;22:2555–60.

    Article  CAS  PubMed  Google Scholar 

  132. Quiles-Melero I, Garcia-Rodriguez J, Gomez-Lopez A, Mingorance J. Evaluation of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry for identification of Candida parapsilosis, C. orthopsilosis and C. metapsilosis. Eur J Clin Microbiol Infect Dis. 2012;31:67–71.

    Article  CAS  PubMed  Google Scholar 

  133. McTaggart LR, Lei E, Richardson SE, Hoang L, Fothergill A, Zhang SX. Rapid identification of Cryptococcus neoformans and Cryptococcus gattii by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49:3050–3.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kemptner J, Marchetti-Deschmann M, Mach R, Druzhinina IS, Kubicek CP, Allmaier G. Evaluation of matrix-assisted laser desorption/ionization (MALDI) preparation techniques for surface characterization of intact Fusarium spores by MALDI linear time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2009;23:877–84.

    Article  CAS  PubMed  Google Scholar 

  135. Erhard M, Hipler UC, Burmester A, Brakhage AA, Wostemeyer J. Identification of dermatophyte species causing onychomycosis and tinea pedis by MALDI-TOF mass spectrometry. Exp Dermatol. 2008;17:356–61.

    Article  PubMed  Google Scholar 

  136. Coulibaly O, Marinach-Patrice C, Cassagne C, Piarroux R, Mazier D, Ranque S. Pseudallescheria/Scedosporium complex species identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Med Mycol. 2011;49:621–6.

    CAS  PubMed  Google Scholar 

  137. Bader O, Weig M, Taverne-Ghadwal L, Lugert R, Gross U, Kuhns M. Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2011;17:1359–65.

    Article  CAS  PubMed  Google Scholar 

  138. Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL. Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast. J Clin Microbiol. 2011;49:1614–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ghosh AK, Paul S, Sood P, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the rapid identification of yeasts causing bloodstream infections. Clin Microbiol Infect. 2015;21:372–8.

    Article  CAS  PubMed  Google Scholar 

  140. Kaleta EJ, Clark AE, Cherkaoui A, et al. Comparative analysis of PCR-electrospray ionization/mass spectrometry (MS) and MALDI-TOF/MS for the identification of bacteria and yeast from positive blood culture bottles. Clin Chem. 2011;57:1057–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Marklein G, Josten M, Klanke U, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol. 2009;47:2912–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Putignani L, Del Chierico F, Onori M, et al. MALDI-TOF mass spectrometry proteomic phenotyping of clinically relevant fungi. Mol BioSyst. 2011;7:620–9.

    Article  CAS  PubMed  Google Scholar 

  143. Qian J, Cutler JE, Cole RB, Cai Y. MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Anal Bioanal Chem. 2008;392:439–49.

    Article  CAS  PubMed  Google Scholar 

  144. Stevenson LG, Drake SK, Shea YR, Zelazny AM, Murray PR. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol. 2010;48:3482–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Van Herendael BH, Bruynseels P, Bensaid M, et al. Validation of a modified algorithm for the identification of yeast isolates using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Eur J Clin Microbiol Infect Dis. 2012;31:841–8.

    Article  CAS  PubMed  Google Scholar 

  146. Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. 2010;5:1733–54.

    Article  CAS  PubMed  Google Scholar 

  147. Benagli C, Rossi V, Dolina M, Tonolla M, Petrini O. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the identification of clinically relevant bacteria. PLoS One. 2011;6:e16424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Neville SA, Lecordier A, Ziochos H, et al. Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification. J Clin Microbiol. 2011;49:2980–4.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ruelle V, El Moualij B, Zorzi W, Ledent P, Pauw ED. Rapid identification of environmental bacterial strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:2013–9.

    Article  CAS  PubMed  Google Scholar 

  150. Warscheid B, Fenselau C. A targeted proteomics approach to the rapid identification of bacterial cell mixtures by matrix-assisted laser desorption/ionization mass spectrometry. Proteomics. 2004;4:2877–92.

    Article  CAS  PubMed  Google Scholar 

  151. Alatoom AA, Cunningham SA, Ihde SM, Mandrekar J, Patel R. Comparison of direct colony method versus extraction method for identification of gram-positive cocci by use of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49:2868–73.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ferreira L, Sanchez-Juanes F, Munoz-Bellido JL, Gonzalez-Buitrago JM. Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method. Clin Microbiol Infect. 2011;17:1007–12.

    Article  CAS  PubMed  Google Scholar 

  153. Drancourt M. Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review. Clin Microbiol Infect. 2010;16:1620–5.

    Article  CAS  PubMed  Google Scholar 

  154. van Veen SQ, Claas EC, Kuijper EJ. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol. 2010;48:900–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Risch M, Radjenovic D, Han JN, Wydler M, Nydegger U, Risch L. Comparison of MALDI TOF with conventional identification of clinically relevant bacteria. Swiss Med Wkly. 2010;140:w13095.

    PubMed  Google Scholar 

  156. Hoffmann H, Stindl S, Ludwig W, et al. Enterobacter hormaechei subsp. oharae subsp. nov., E. hormaechei subsp. hormaechei comb. nov., and E. hormaechei subsp. steigerwaltii subsp. nov., three new subspecies of clinical importance. J Clin Microbiol. 2005;43:3297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Paauw A, Caspers MP, Schuren FH, et al. Genomic diversity within the Enterobacter cloacae complex. PLoS One. 2008;3:e3018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Blosser SJ, Drake SK, Andrasko JL, et al. Multicenter matrix-assisted laser desorption ionization-time of flight mass spectrometry study for identification of clinically relevant Nocardia spp. J Clin Microbiol. 2016;54:1251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Branda JA, Rychert J, Burnham CA, et al. Multicenter validation of the VITEK MS v2.0 MALDI-TOF mass spectrometry system for the identification of fastidious gram-negative bacteria. Diagn Microbiol Infect Dis. 2014;78:129–31.

    Article  CAS  PubMed  Google Scholar 

  160. Garner O, Mochon A, Branda J, et al. Multi-centre evaluation of mass spectrometric identification of anaerobic bacteria using the VITEK(R) MS system. Clin Microbiol Infect. 2014;20:335–9.

    Article  CAS  PubMed  Google Scholar 

  161. Lasch P, Wahab T, Weil S, et al. Identification of highly pathogenic microorganisms by matrix-assisted laser desorption ionization-time of flight mass spectrometry: results of an interlaboratory ring trial. J Clin Microbiol. 2015;53:2632–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Manji R, Bythrow M, Branda JA, et al. Multi-center evaluation of the VITEK(R) MS system for mass spectrometric identification of non-Enterobacteriaceae Gram-negative bacilli. Eur J Clin Microbiol Infect Dis. 2014;33:337–46.

    Article  CAS  PubMed  Google Scholar 

  163. Mellmann A, Bimet F, Bizet C, et al. High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J Clin Microbiol. 2009;47:3732–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rychert J, Burnham CA, Bythrow M, et al. Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria. J Clin Microbiol. 2013;51:2225–31.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Rychert J, Slechta ES, Barker AP, et al. Multicenter evaluation of the Vitek MS v3.0 system for the identification of filamentous fungi. J Clin Microbiol. 2018;56:e01353–17.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Schieffer KM, Tan KE, Stamper PD, et al. Multicenter evaluation of the Sepsityper extraction kit and MALDI-TOF MS for direct identification of positive blood culture isolates using the BD BACTEC FX and VersaTREK((R)) diagnostic blood culture systems. J Appl Microbiol. 2014;116:934–41.

    Article  CAS  PubMed  Google Scholar 

  167. Veloo ACM, Jean-Pierre H, Justesen US, et al. A multi-center ring trial for the identification of anaerobic bacteria using MALDI-TOF MS. Anaerobe. 2017;48:94–7.

    Article  CAS  PubMed  Google Scholar 

  168. Vlek A, Kolecka A, Khayhan K, et al. Interlaboratory comparison of sample preparation methods, database expansions, and cutoff values for identification of yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry using a yeast test panel. J Clin Microbiol. 2014;52:3023–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Hathout Y, Demirev PA, Ho YP, et al. Identification of Bacillus spores by matrix-assisted laser desorption ionization-mass spectrometry. Appl Environ Microbiol. 1999;65:4313–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Tao L, Yu X, Snyder AP, Li L. Bacterial identification by protein mass mapping combined with an experimentally derived protein mass database. Anal Chem. 2004;76:6609–17.

    Article  CAS  PubMed  Google Scholar 

  171. Kumar A, Ellis P, Arabi Y, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009;136:1237–48.

    Article  PubMed  Google Scholar 

  172. Yan Y, He Y, Maier T, et al. Improved identification of yeast species directly from positive blood culture media by combining Sepsityper specimen processing and Microflex analysis with the matrix-assisted laser desorption ionization Biotyper system. J Clin Microbiol. 2011;49:2528–32.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Schmidt V, Jarosch A, Marz P, Sander C, Vacata V, Kalka-Moll W. Rapid identification of bacteria in positive blood culture by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis. 2012;31:311–7.

    Article  CAS  PubMed  Google Scholar 

  174. Mauri C, Principe L, Bracco S, et al. Identification by mass spectrometry and automated susceptibility testing from positive bottles: a simple, rapid, and standardized approach to reduce the turnaround time in the management of blood cultures. BMC Infect Dis. 2017;17:749.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Huang TS, Lee CC, Tu HZ, Lee SS. Rapid identification of mycobacteria from positive MGIT broths of primary cultures by MALDI-TOF mass spectrometry. PLoS One. 2018;13:e0192291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Fothergill A, Kasinathan V, Hyman J, Walsh J, Drake T, Wang YF. Rapid identification of bacteria and yeasts from positive-blood-culture bottles by using a lysis-filtration method and matrix-assisted laser desorption ionization-time of flight mass spectrum analysis with the SARAMIS database. J Clin Microbiol. 2013;51:805–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Burillo A, Rodriguez-Sanchez B, Ramiro A, Cercenado E, Rodriguez-Creixems M, Bouza E. Gram-stain plus MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) for a rapid diagnosis of urinary tract infection. PLoS One. 2014;9:e86915.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Barnini S, Ghelardi E, Brucculeri V, Morici P, Lupetti A. Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate. BMC Microbiol. 2015;15:124.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Ferreira L, Sanchez-Juanes F, Porras-Guerra I, et al. Microorganisms direct identification from blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2011;17:546–51.

    Article  CAS  PubMed  Google Scholar 

  180. Moussaoui W, Jaulhac B, Hoffmann AM, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin Microbiol Infect. 2010;16:1631–8.

    Article  CAS  PubMed  Google Scholar 

  181. Romero-Gomez MP, Mingorance J. The effect of the blood culture bottle type in the rate of direct identification from positive cultures by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry. J Infect. 2011;62:251–3.

    Article  CAS  PubMed  Google Scholar 

  182. Kok J, Thomas LC, Olma T, Chen SC, Iredell JR. Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization Sepsityper and time of flight mass spectrometry. PLoS One. 2011;6:e23285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Schubert S, Weinert K, Wagner C, et al. Novel, improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. J Mol Diagn. 2011;13:701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kroumova V, Gobbato E, Basso E, Mucedola L, Giani T, Fortina G. Direct identification of bacteria in blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new methodological approach. Rapid Commun Mass Spectrom. 2011;25:2247–9.

    Article  CAS  PubMed  Google Scholar 

  185. Edwards-Jones V, Claydon MA, Evason DJ, Walker J, Fox AJ, Gordon DB. Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J Med Microbiol. 2000;49:295–300.

    Article  CAS  PubMed  Google Scholar 

  186. Du Z, Yang R, Guo Z, Song Y, Wang J. Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2002;74:5487–91.

    Article  CAS  PubMed  Google Scholar 

  187. Camara JE, Hays FA. Discrimination between wild-type and ampicillin-resistant Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem. 2007;389:1633–8.

    Article  CAS  PubMed  Google Scholar 

  188. Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol. 2011;49:3321–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hrabak J, Walkova R, Studentova V, Chudackova E, Bergerova T. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49:3222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Marinach C, Alanio A, Palous M, et al. MALDI-TOF MS-based drug susceptibility testing of pathogens: the example of Candida albicans and fluconazole. Proteomics. 2009;9:4627–31.

    Article  CAS  PubMed  Google Scholar 

  191. Idelevich EA, Sparbier K, Kostrzewa M, Becker K. Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay. Clin Microbiol Infect. 2018;24(7):738–43. https://doi.org/10.1016/j.cmi.2017.10.016. Epub 2017 Oct 24.

    Article  CAS  PubMed  Google Scholar 

  192. Spinali S, van Belkum A, Goering RV, et al. Microbial typing by matrix-assisted laser desorption ionization-time of flight mass spectrometry: do we need guidance for data interpretation? J Clin Microbiol. 2015;53:760–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lartigue MF. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for bacterial strain characterization. Infect Genet Evol. 2013;13:230–5.

    Article  CAS  PubMed  Google Scholar 

  194. Mencacci A, Monari C, Leli C, et al. Typing of nosocomial outbreaks of Acinetobacter baumannii by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51:603–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mellmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mellmann, A., Müthing, J. (2018). MALDI-TOF Mass Spectrometry-Based Microbial Identification and Beyond. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-33900-9_10

Download citation

Publish with us

Policies and ethics