Skip to main content

NSAIDS and Aspirin: Recent Advances and Implications for Clinical Management

  • Chapter
  • First Online:
NSAIDs and Aspirin

Abstract

Acetylsalicylic acid (aspirin) is unique—it contains two active moieties within one and the same molecule: the reactive acetyl group of the unmetabolized aspirin and the salicylate metabolite. Both have different pharmacokinetics and pharmacodynamics. Aspirin is rapidly hydrolyzed into inactive acetate and salicylate by aspirin “esterases,” preferentially in the intestinal epithelium, liver, and blood. The half-life of unmetabolized aspirin in blood is 20–30 min, the half-life of salicylate at analgesic doses of 1–2 g about 3 h. Different galenic preparations of aspirin are available with different pharmacokinetics, most notable a disintegrating formulation with markedly increased systemic bioavailability of unmetabolized aspirin. Pharmacological actions of aspirin, i.e., anti-inflammatory, analgesic, and antipyretic effects, are largely due to acetylation. This action is irreversible, i.e., the duration of action is determined by the turnover rate of the protein and not by the short half-life of aspirin in blood. The most important protein targets are the prostaglandin cyclooxygenases-1 (COX-1) and COX-2. Both enzymes are inhibited in vitro at comparable potency. In vivo; the inhibition of COX-2 is less pronounced, probably because of the rapid protein turnover rate of the enzyme and the short half-life of aspirin. In addition, acetylation of COX-2 allows for generation of15-(R)HETE and subsequent formation of “aspirin-triggered lipoxin” (ATL) by interaction with white cell lipoxygenases. In the cardiovascular system, aspirin also acetylates eNOS with subsequent upregulation of NO formation and enhanced expression of the antioxidant heme-oxygenase-1. Salicylate has some actions by its own, notably uncoupling of oxidative phosphorylation at low millimolar concentrations. This will contribute to the anti-inflammatory and, perhaps, antipyretic effects of aspirin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dreser H. Pharmakologisches über Aspirin (Acetylsalizylsäure). Pflügers Arch Physiol. 1899;76:306–18.

    Article  CAS  Google Scholar 

  2. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231(25):232–5.

    Article  CAS  PubMed  Google Scholar 

  3. Roth GJ, Stanford N, Majerus PW. Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci U S A. 1975;72(8):3073–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bateman LA, et al. An alkyne-aspirin chemical reporter for the detection of aspirin-dependent protein modification in living cells. J Am Chem Soc. 2013;135(39):14568–73.

    Article  CAS  PubMed  Google Scholar 

  5. Wang J, et al. Mapping sites of aspirin-induced acetylations in live cells by quantitative acid-cleavable activity-based protein profiling (QA-ABPP). Scientific Reports. 2015;5.

    Google Scholar 

  6. Nagelschmitz J, Blunk M, Krätschmar J, et al. Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers. Clin Pharmacol. 2013;5:1–9.

    Google Scholar 

  7. Shen J, et al. Model representation of salicylate pharmacokinetics using unbound plasma salicylate concentrations and metabolite urinary excretion rates following a single oral dose. J Pharmacokinet Biopharm. 1991;19(5):575–95.

    Article  CAS  PubMed  Google Scholar 

  8. Frantz B, O’Neill EA. The effect of sodium salicylate and aspirin on NF-kappa B. Science. 1995;270(5244):2017–9.

    Article  CAS  PubMed  Google Scholar 

  9. Schrör K, Rauch BH. Aspirin and lipid mediators in the cardiovascular system. Prostaglandins Other Lipid Mediat. 2015;121(Pt A):17–23.

    Google Scholar 

  10. Weyrich AS, Lindemann S, Zimmerman GA. The evolving role of platelets in inflammation. J Thromb Haemost. 2003;1(9):1897–905.

    Article  CAS  PubMed  Google Scholar 

  11. Hohlfeld T, Schrör K. Antiinflammatory effects of aspirin in ACS: relevant to its cardiocoronary actions? Thrombosis Haemost. 2015;114:469–77.

    Article  Google Scholar 

  12. Patrignani P, Filabozzi P, Patrono C. Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest. 1982;69(6):1366–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reilly IA, FitzGerald GA. Inhibition of thromboxane formation in vivo and ex vivo: implications for therapy with platelet inhibitory drugs. Blood. 1987;69(1):180–6.

    CAS  PubMed  Google Scholar 

  14. Catella-Lawson F, et al. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N Engl J Med. 2001;345(25):1809–17.

    Article  CAS  PubMed  Google Scholar 

  15. Saxena A, et al. Drug/drug interaction of common NSAIDs with antiplatelet effect of aspirin in human platelets. Eur J Pharmacol. 2013;721(1-3):215–24.

    Article  CAS  PubMed  Google Scholar 

  16. Hennekens CH, et al. Hypothesis formulation from subgroup analyses: nonadherence or nonsteroidal anti-inflammatory drug use explains the lack of clinical benefit of aspirin on first myocardial infarction attributed to “aspirin resistance”. Am Heart J. 2010;159(5):744–8.

    Article  CAS  PubMed  Google Scholar 

  17. Bhala N, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet. 2013;382(9894):769–79.

    Article  CAS  PubMed  Google Scholar 

  18. FitzGerald GA, et al. Endogenous biosynthesis of prostacyclin and thromboxane and platelet function during chronic administration of aspirin in man. J Clin Invest. 1983;71(3):676–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Higgs GA, et al. Pharmacokinetics of aspirin and salicylate in relation to inhibition of arachidonate cyclooxygenase and antiinflammatory activity. Proc Natl Acad Sci U S A. 1987;84(5):1417–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hersh EV, Moore PA, Ross GL. Over-the-counter analgesics and antipyretics: a critical assessment. Clin Ther. 2000;22(5):500–48.

    Article  CAS  PubMed  Google Scholar 

  21. Schwartz JI, et al. Cyclooxygenase-2 inhibition by rofecoxib reverses naturally occurring fever in humans. Clin Pharmacol Ther. 1999;65(6):653–60.

    Article  CAS  PubMed  Google Scholar 

  22. Aronoff DM, et al. Inhibition of prostaglandin H2 synthases by salicylate is dependent on the oxidative state of the enzymes. J Pharmacol Exp Ther. 2003;304(2):589–95.

    Article  CAS  PubMed  Google Scholar 

  23. Mancini JA, et al. Mutation of serine-516 in human prostaglandin G/H synthase-2 to methionine or aspirin acetylation of this residue stimulates 15-R-HETE synthesis. FEBS Lett. 1994;342(1):33–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lecomte M, et al. Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. J Biol Chem. 1994;269(18):13207–15.

    CAS  PubMed  Google Scholar 

  25. Claria J, Serhan CN. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci U S A. 1995;92(21):9475–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spite M, Serhan CN. Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins. Circ Res. 2010;107(10):1170–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morris T, et al. Effects of low-dose aspirin on acute inflammatory responses in humans. J Immunol. 2009;183(3):2089–96.

    Article  CAS  PubMed  Google Scholar 

  28. Taubert D, et al. Aspirin induces nitric oxide release from vascular endothelium: a novel mechanism of action. Br J Pharmacol. 2004;143(1):159–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jung SB, et al. Histone deacetylase 3 antagonizes aspirin-stimulated endothelial nitric oxide production by reversing aspirin-induced lysine acetylation of endothelial nitric oxide synthase. Circ Res. 2010;107(7):877–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalgutkar AS, et al. Aspirin-like molecules that covalently inactivate cyclooxygenase-2. Science. 1998;280(5367):1268–70.

    Article  CAS  PubMed  Google Scholar 

  31. Grosser N, et al. Heme oxygenase-1 induction may explain the antioxidant profile of aspirin. Biochem Biophys Res Commun. 2003;308(4):956–60.

    Article  CAS  PubMed  Google Scholar 

  32. Grosser N, Schröder H. Aspirin protects endothelial cells from oxidant damage via the nitric oxide-cGMP pathway. Arterioscler Thromb Vasc Biol. 2003;23(8):1345–51.

    Article  CAS  PubMed  Google Scholar 

  33. Nascimento-Silva V, et al. Novel lipid mediator aspirin-triggered lipoxin A4 induces heme oxygenase-1 in endothelial cells. Am J Physiol Cell Physiol. 2005;289(3):C557–63.

    Article  CAS  PubMed  Google Scholar 

  34. Hennekens CH, et al. A randomized trial of aspirin at clinically relevant doses and nitric oxide formation in humans. J Cardiovasc Pharmacol Ther. 2010;15(4):344–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hetzel S, et al. Aspirin increases nitric oxide formation in chronic stable coronary disease. J Cardiovasc Pharmacol Ther. 2013;18(3):217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hennekens CH. A randomized trial of aspirin at clinically relevant doses and nitric oxide formation in humans. J Cardiovasc Pharmacol. 2010;15.

    Google Scholar 

  37. Cronstein BN, Montesinos MC, Weissmann G. Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of inhibition of prostaglandin synthesis and p105 of NFkappaB. Proc Natl Acad Sci U S A. 1999;96(11):6377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hasko G, et al. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov. 2008;7(9):759–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O’Brien M, et al. Aspirin attenuates platelet activation and immune activation in HIV-1-infected subjects on antiretroviral therapy: a pilot study. J Acquir Immune Defic Syndr. 2013;63(3):280–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chiang N, et al. Aspirin triggers antiinflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial. Proc Natl Acad Sci U S A. 2004;101(42):15178–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Edwards JE, et al. Oral aspirin in postoperative pain: a quantitative systematic review. Pain. 1999;81(3):289–97.

    Article  CAS  PubMed  Google Scholar 

  42. Scholz J, Woolf CJ. Can we conquer pain? Nat Neurosci. 2002;5(Suppl):1062–7.

    Article  CAS  PubMed  Google Scholar 

  43. Svensson CI, Zattoni M, Serhan CN. Lipoxins and aspirin-triggered lipoxin inhibit inflammatory pain processing. J Exp Med. 2007;204(2):245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vardeh D, et al. COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice. J Clin Invest. 2009;119(2):287–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Anikwue R, et al. Decrease in efficacy and potency of nonsteroidal anti-inflammatory drugs by chronic delta(9)-tetrahydrocannabinol administration. J Pharmacol Exp Ther. 2002;303(1):340–6.

    Article  CAS  PubMed  Google Scholar 

  46. Ruggieri V, et al. The antinociceptive effect of acetylsalicylic acid is differently affected by a CB1 agonist or antagonist and involves the serotonergic system in rats. Life Sci. 2010;86(13-14):510–7.

    Article  CAS  PubMed  Google Scholar 

  47. Göbel H, et al. Acetylsalicylic acid activates antinociceptive brain-stem reflex activity in headache patients and in healthy subjects. Pain. 1992;48(2):187–95.

    Article  PubMed  Google Scholar 

  48. Diener HC, et al. Aspirin in the treatment of acute migraine attacks. Expert Rev Neurother. 2006;6(4):563–73.

    Article  CAS  PubMed  Google Scholar 

  49. Adler RD, et al. The effect of salicylate on pyrogen-induced fever in man. Clin Sci. 1969;37(1):91–7.

    CAS  PubMed  Google Scholar 

  50. Rosendorff C, Cranston WI. Effects of salicylate on human temperature regulation. Clin Sci. 1968;35(1):81–91.

    CAS  PubMed  Google Scholar 

  51. MacDonald TM, Wei L. Effect of ibuprofen on cardioprotective effect of aspirin. Lancet. 2003;361(9357):573–4.

    Article  CAS  PubMed  Google Scholar 

  52. Hohlfeld T, Saxena A, Schror K. High on treatment platelet reactivity against aspirin by non-steroidal anti-inflammatory drugs--pharmacological mechanisms and clinical relevance. Thromb Haemost. 2013;109(5):825–33.

    Article  CAS  PubMed  Google Scholar 

  53. Mason WD, Winer N. Influence of food on aspirin absorption from tablets and buffered solutions. J Pharm Sci. 1983;72(7):819–21.

    Article  CAS  PubMed  Google Scholar 

  54. Voelker M, Hammer M. Dissolution and pharmacokinetics of a novel micronized aspirin formulation. Inflammopharmacology. 2012;20(4):225–31.

    Article  CAS  PubMed  Google Scholar 

  55. Graham DY, Smith JL. Aspirin and the stomach. Ann Intern Med. 1986;104(3):390–8.

    Article  CAS  PubMed  Google Scholar 

  56. Cryer B, Feldman M. Effects of very low dose daily, long-term aspirin therapy on gastric, duodenal, and rectal prostaglandin levels and on mucosal injury in healthy humans. Gastroenterology. 1999;117(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  57. Rowland M, et al. Absorption kinetics of aspirin in man following oral administration of an aqueous solution. J Pharm Sci. 1972;61(3):379–85.

    Article  CAS  PubMed  Google Scholar 

  58. Rowland M, et al. Kinetics of acetylsalicylic acid disposition in man. Nature. 1967;215(5099):413–4.

    Article  CAS  PubMed  Google Scholar 

  59. Warner TD, et al. Influence of plasma protein on the potencies of inhibitors of cyclooxygenase-1 and -2. FASEB J. 2006;20(3):542–4.

    CAS  PubMed  Google Scholar 

  60. Harris PA, Riegelman S. Influence of the route of administration on the area under the plasma concentration-time curve. J Pharm Sci. 1969;58(1):71–5.

    Article  CAS  PubMed  Google Scholar 

  61. Pedersen AK, FitzGerald GA. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase. N Engl J Med. 1984;311(19):1206–11.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou Y, Boudreau DM, Freedman AN. Trends in the use of aspirin and nonsteroidal anti-inflammatory drugs in the general U.S. population. Pharmacoepidemiol Drug Saf. 2013;23(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  63. Adebayo GI, Williams J, Healy S. Aspirin esterase activity—evidence for skewed distribution in healthy volunteers. Eur J Intern Med. 2007;18(4):299–303.

    Article  CAS  PubMed  Google Scholar 

  64. Rowland M, Riegelman S. Pharmacokinetics of acetylsalicylic acid and salicylic acid after intravenous administration in man. J Pharm Sci. 1968;57:1313–9.

    Article  CAS  Google Scholar 

  65. Kuehl GE, et al. Glucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes. Drug Metab Dispos. 2006;34(2):199–202.

    Article  CAS  PubMed  Google Scholar 

  66. Chen Y, et al. UGT1A6 polymorphism and salicylic acid glucuronidation following aspirin. Pharmacogenet Genomics. 2007;17(8):571–9.

    Article  CAS  PubMed  Google Scholar 

  67. Osawa K, et al. Association between polymorphisms in UDP-glucuronosyltransferase 1A6 and 1A7 and colorectal cancer risk. Asian Pac J Cancer Prev. 2012;13(5):2311–4.

    Article  PubMed  Google Scholar 

  68. Bedford C, Cummings AJ, Martin BK. A kinetic study of the elimination of salicylate in man. Br J Pharmacol Chemother. 1965;24:418–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Notarianni LJ, Ogunbona FA, Oldham HG. Glycine conjugation of salicylic acid after aspirin overdose. Br J Clin Pharmacol. 1983;15.

    Google Scholar 

  70. Forman WB, Davidson ED, Webster Jr LT. Enzymatic conversion of salicylate to salicylurate. Mol Pharmacol. 1971;7(3):247–59.

    CAS  PubMed  Google Scholar 

  71. Wilson JT, et al. Gentisuric acid: metabolic formation in animals and identification as a metabolite of aspirin in man. Clin Pharmacol Ther. 1978;23(6):635–43.

    Article  CAS  PubMed  Google Scholar 

  72. Cham BE, et al. Simultaneous liquid-chromatographic quantitation of salicylic acid, salicyluric acid, and gentisic acid in urine. Clin Chem. 1980;26(1):111–4.

    CAS  PubMed  Google Scholar 

  73. Caldwell J, Gorman JO’, Smith RL. Inter-individual differences in the glycine conjugation of salicylic acid [proceedings]. Br J Clin Pharmacol, 1980. 9(1): 114p.

    Google Scholar 

  74. Steiner TJ, Lange R, Voelker M. Aspirin in episodic tension-type headache: placebo-controlled dose-ranging comparison with paracetamol. Cephalalgia. 2003;23(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  75. Martinez-Martin P, et al. Efficacy and safety of metamizol vs. acetylsalicylic acid in patients with moderate episodic tension-type headache: a randomized, double-blind, placebo- and active-controlled, multicentre study. Cephalalgia. 2001;21(5):604–10.

    Article  CAS  PubMed  Google Scholar 

  76. Gatoulis SC, Voelker M, Fisher M. Assessment of the efficacy and safety profiles of aspirin and acetaminophen with codeine: results from 2 randomized, controlled trials in individuals with tension-type headache and postoperative dental pain. Clin Ther. 2012;34(1):138–48.

    Article  CAS  PubMed  Google Scholar 

  77. MacGregor EA, Dowson A, Davies PT. Mouth-dispersible aspirin in the treatment of migraine: a placebo-controlled study. Headache. 2002;42(4):249–55.

    Article  PubMed  Google Scholar 

  78. Lange R, Schwarz JA, Hohn M. Acetylsalicylic acid effervescent 1000 mg (Aspirin) in acute migraine attacks; a multicentre, randomized, double-blind, single-dose, placebo-controlled parallel group study. Cephalalgia. 2000;20(7):663–7.

    CAS  PubMed  Google Scholar 

  79. Diener HC, et al. Placebo-controlled comparison of effervescent acetylsalicylic acid, sumatriptan and ibuprofen in the treatment of migraine attacks. Cephalalgia. 2004;24(11):947–54.

    Article  CAS  PubMed  Google Scholar 

  80. Diener HC, et al. Efficacy of 1,000 mg effervescent acetylsalicylic acid and sumatriptan in treating associated migraine symptoms. Eur Neurol. 2004;52(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  81. Lipton RB, et al. Aspirin is efficacious for the treatment of acute migraine. Headache. 2005;45(4):283–92.

    Article  PubMed  Google Scholar 

  82. Lampl C, Voelker M, Diener HC. Efficacy and safety of 1,000 mg effervescent aspirin: individual patient data meta-analysis of three trials in migraine headache and migraine accompanying symptoms. J Neurol. 2007;254(6):705–12.

    Article  CAS  PubMed  Google Scholar 

  83. Eccles R, et al. Effects of acetylsalicylic acid on sore throat pain and other pain symptoms associated with acute upper respiratory tract infection. Pain Med. 2003;4(2):118–24.

    Article  PubMed  Google Scholar 

  84. Zhang WY, Li Wan A. Po, Efficacy of minor analgesics in primary dysmenorrhoea: a systematic review. Br J Obstet Gynaecol. 1998;105(7):780–9.

    Article  CAS  PubMed  Google Scholar 

  85. Forbes JA, et al. Evaluation of an ibuprofen controlled-release tablet and placebo in postoperative oral surgery pain. Pharmacotherapy. 1991;11(3):242–8.

    CAS  PubMed  Google Scholar 

  86. Forbes JA, et al. Analgesic efficacy of bromfenac, ibuprofen, and aspirin in postoperative oral surgery pain. Clin Pharmacol Ther. 1992;51(3):343–52.

    Article  CAS  PubMed  Google Scholar 

  87. Cooper SA. Comparative analgesic efficacies of aspirin and acetaminophen. Arch Intern Med. 1981;141(3):282–5.

    Article  CAS  PubMed  Google Scholar 

  88. Cooper SA, Voelker M. Evaluation of onset of pain relief from micronized aspirin in a dental pain model. Inflammopharmacology. 2012;20(4):233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bachert C, et al. Aspirin compared with acetaminophen in the treatment of fever and other symptoms of upper respiratory tract infection in adults: a multicenter, randomized, double-blind, double-dummy, placebo-controlled, parallel-group, single-dose, 6-hour dose-ranging study. Clin Ther. 2005;27(7):993–1003.

    Article  CAS  PubMed  Google Scholar 

  90. Kanani K, Gatoulis SC, Voelker M. Influence of differing analgesic formulations of aspirin on pharmacokinetic parameters. Pharmaceutics. 2015;7(3):188–98.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lecchi M, et al. Pharmacokinetics and safety of a new aspirin formulation for the acute treatment of primary headaches. Expert Opin Drug Metab Toxicol. 2014;10(10):1381–95.

    Article  CAS  PubMed  Google Scholar 

  92. Muir N, et al. Comparative bioavailability of aspirin and paracetamol following single dose administration of soluble and plain tablets. Curr Med Res Opin. 1997;13(9):491–500.

    Article  CAS  PubMed  Google Scholar 

  93. Muir N, et al. The influence of dosage form on aspirin kinetics: implications for acute cardiovascular use. Curr Med Res Opin. 1997;13(10):547–53.

    Article  CAS  PubMed  Google Scholar 

  94. Sagar KA, Smyth MR. A comparative bioavailability study of different aspirin formulations using on-line multidimensional chromatography. J Pharm Biomed Anal. 1999;21(2):383–92.

    Article  CAS  PubMed  Google Scholar 

  95. Brandon RA, et al. A new formulation of aspirin: bioavailability and analgesic efficacy in migraine attacks. Cephalalgia. 1986;6(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  96. Stillings M, et al. Comparison of the pharmacokinetic profiles of soluble aspirin and solid paracetamol tablets in fed and fasted volunteers. Curr Med Res Opin. 2000;16(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  97. Voelker M, Centofani R. A bioavailability study of fast release aspirin under fasting and fed conditions and regular aspirin under fed conditions. Bayer Study Report. PH-36651, 2011-11-24, 2011.

    Google Scholar 

  98. Zeymer U, Gebert I, Roitenberg A, Hohlfeld T. Prospective, randomized comparison of 500 mg and 250 mg acetylsalicylic acid i.v. and 300 mg p.o. in patients with acute coronary syndrome, measured by time-dependent thromboxane inhibition (ACUTE). Abstr. AHA Scientific Sessions, Nov 7–11, Orlando, FL, USA, 2015.

    Google Scholar 

  99. Limmroth V, May A, Diener H. Lysine-acetylsalicylic acid in acute migraine attacks. Eur Neurol. 1999;41(2):88–93.

    Article  CAS  PubMed  Google Scholar 

  100. Leniger T, et al. Comparison of intravenous valproate with intravenous lysine-acetylsalicylic acid in acute migraine attacks. Headache. 2005;45(1):42–6.

    Article  PubMed  Google Scholar 

  101. Weatherall MW, et al. Intravenous aspirin (lysine acetylsalicylate) in the inpatient management of headache. Neurology. 2010;75(12):1098–103.

    Article  CAS  PubMed  Google Scholar 

  102. Neurologie, D.G.f., Therapie der Migräne. 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Voelker Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schrör, K., Voelker, M. (2016). NSAIDS and Aspirin: Recent Advances and Implications for Clinical Management. In: Lanas, A. (eds) NSAIDs and Aspirin. Springer, Cham. https://doi.org/10.1007/978-3-319-33889-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33889-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33887-3

  • Online ISBN: 978-3-319-33889-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics