Skip to main content

Inverse Spectral Geometry

  • Chapter
  • First Online:

Part of the book series: Progress in Mathematics ((PM,volume 318))

Abstract

Determining the spectral properties of the Laplacian on a given Riemannian manifold is a “forward” spectral problem. The corresponding “inverse” problem is to deduce geometric properties from some knowledge of the spectrum. In the case of a surface with hyperbolic ends, the input data could include the resonance set, the scattering phase, perhaps even the scattering matrix for a particular set of frequencies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albin, P.: A renormalized index theorem for some complete asymptotically regular metrics: the Gauss-Bonnet theorem. Adv. Math. 213, 1–52 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albin, P., Aldana, C.L., Rochon, F.: Compactness of relatively isospectral sets of surfaces via conformal surgeries. J. Geom. Anal. 25, 1185–1210 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barreto, A.S.: Radiation fields, scattering, and inverse scattering on asymptotically hyperbolic manifolds. Duke Math. J. 129, 407–480 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bérard, P.: Transplantaion et isospectralité. I. Math. Ann. 292, 547–560 (1992)

    Article  Google Scholar 

  5. Bers, L.: A remark on Mumford’s compactness theorem. Isr. J. Math. 12, 400–407 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bers, L.: An inequality for Riemann surfaces. In: Chavel, I., Farkas, H.M. (eds.) Differential Geometry and Complex Analysis, pp. 87–93. Springer, Berlin (1985)

    Chapter  Google Scholar 

  7. Borthwick, D., Judge, C., Perry, P.A.: Determinants of Laplacians and isopolar metrics on surfaces of infinite area. Duke Math. J. 118, 61–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borthwick, D., Judge, C., Perry, P.A.: Selberg’s zeta function and the spectral geometry of geometrically finite hyperbolic surfaces. Comment. Math. Helv. 80, 483–515 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borthwick, D., McRae, A., Taylor, E.C.: Quasirigidity of hyperbolic 3-manifolds and scattering theory. Duke Math. J. 89, 225–236 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borthwick, D., Perry, P.A.: Inverse scattering results for manifolds hyperbolic near infinity. J. Geom. Anal. 21, 305–333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brooks, R., Davidovich, O.: Isoscattering on surfaces. J. Geom. Anal. 13, 39–53 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brooks, R., Gornet, R., Perry, P.A.: Isoscattering Schottky manifolds. Geom. Funct. Anal. 10, 307–326 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brooks, R., Perry, P.A.: Isophasal scattering manifolds in two dimensions. Commun. Math. Phys. 223, 465–474 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bunke, U., Olbrich, M.: Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group. Ann. Math. 149, 627–689 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  16. Cheng, S.Y., Li, P., Yau, S.T.: On the upper estimate of the heat kernel of a complete Riemannian manifold. Am. J. Math. 103, 1021–1063 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guillopé, L., Zworski, M.: Scattering asymptotics for Riemann surfaces. Ann. Math. 145, 597–660 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guillopé, L., Zworski, M.: The wave trace for Riemann surfaces. Geom. Funct. Anal. 9, 1156–1168 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hassell, A., Zelditch, S.: Determinants of Laplacians in exterior domains. Int. Math. Res. Not. 1999 (18), 971–1004 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iwaniec, H.: Spectral Methods of Automorphic Forms. Graduate Studies in Mathematics, vol. 53, 2nd edn. American Mathematical Society, Providence (2002)

    Google Scholar 

  21. Joshi, M.S., Barreto, A.S.: Inverse scattering on asymptotically hyperbolic manifolds. Acta Math. 184, 41–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1, 43–69 (1967)

    MathSciNet  MATH  Google Scholar 

  23. Mumford, D.: A remark on Mahler’s compactness theorem. Proc. Am. Math. Soc. 28, 289–294 (1971)

    MathSciNet  MATH  Google Scholar 

  24. Olbrich, M.: Cohomology of convex cocompact groups and invariant distributions on limit sets. Preprint (2002)

    Google Scholar 

  25. Osgood, B., Phillips, R., Sarnak, P.: Compact isospectral sets of surfaces. J. Funct. Anal. 80, 212–234 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Perry, P.A.: Inverse spectral problems in Riemannian geometry. In: Inverse Problems in Mathematical Physics (Saariselkä, 1992). Lecture Notes in Physics, vol. 422, pp. 174–182. Springer, Berlin (1993)

    Google Scholar 

  27. Perry, P.A.: A trace-class rigidity theorem for Kleinian groups. Ann. Acad. Sci. Fenn. Ser. A I Math. 20, 251–257 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Venkov, A.B.: Spectral Theory of Automorphic Functions and Its Applications. Kluwer Academic Publishers, Dordrecht (1990)

    Book  MATH  Google Scholar 

  29. Voros, A.: Spectral functions, special functions and the Selberg zeta function. Commun. Math. Phys. 110, 439–465 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zelditch, S.: The inverse spectral problem. In: Surveys in Differential Geometry, vol. IX, pp. 401–467. International Press, Somerville (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borthwick, D. (2016). Inverse Spectral Geometry. In: Spectral Theory of Infinite-Area Hyperbolic Surfaces. Progress in Mathematics, vol 318. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-33877-4_13

Download citation

Publish with us

Policies and ethics