Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 318))

  • 1553 Accesses

Abstract

For a geometrically finite hyperbolic surface X the Selberg zeta function Z X (s) was introduced in §2.5. The zeta function is associated with the length spectrum of X (or, equivalently, to traces of conjugacy classes of Γ). We will see in this chapter that it deserves to be thought of as a spectral invariant as well, by virtue of a beautiful correspondence between resonances of X and the zeros of Z X (s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borthwick, D., Judge, C., Perry, P.A.: Determinants of Laplacians and isopolar metrics on surfaces of infinite area. Duke Math. J. 118, 61–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borthwick, D., Judge, C., Perry, P.A.: Selberg’s zeta function and the spectral geometry of geometrically finite hyperbolic surfaces. Comment. Math. Helv. 80, 483–515 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bunke, U., Olbrich, M.: Gamma-cohomology and the Selberg zeta function. J. Reine Angew. Math. 467, 199–219 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Bunke, U., Olbrich, M.: Fuchsian groups of the second kind and representations carried by the limit set. Invent. Math. 127, 127–154 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bunke, U., Olbrich, M.: Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group. Ann. Math. 149, 627–689 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Efrat, I.: Determinants of Laplacians on surfaces of finite volume. Commun. Math. Phys. 119, 443–451 (1988). Erratum, Commun. Math. Phys. 138, 607 (1991)

    Google Scholar 

  7. Fried, D.: The zeta functions of Ruelle and Selberg. I. Ann. Sci. École Norm. Sup. (4) 19, 491–517 (1986)

    Google Scholar 

  8. Guillarmou, C.: Generalized Krein formula, determinants, and Selberg zeta function in even dimension. Am. J. Math. 131, 1359–1417 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guillopé, L.: Fonctions zeta de Selberg et surfaces de géométrie finie. In: Zeta Functions in Geometry (Tokyo, 1990). Advanced Studies in Pure Mathematics, vol. 21, pp. 33–70. Kinokuniya, Tokyo (1992)

    Google Scholar 

  10. Guillopé, L., Zworski, M.: Scattering asymptotics for Riemann surfaces. Ann. Math. 145, 597–660 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Juhl, A.: Cohomological Theory of Dynamical Zeta Functions. Birkhäuser, Basel (2001)

    Book  MATH  Google Scholar 

  12. Mazzeo, R., Melrose, R.B.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75, 260–310 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Patterson, S.J.: The Selberg zeta-function of a Kleinian group. In: Number Theory, Trace Formulas, and Discrete Groups: Symposium in Honor of Atle Selberg, Oslo, Norway, 14–21 July 1987. Academic, New York (1989)

    Google Scholar 

  14. Patterson, S.J., Perry, P.A.: The divisor of Selberg’s zeta function for Kleinian groups. Duke Math. J. 106, 321–390 (2001). Appendix A by Charles Epstein

    Google Scholar 

  15. Perry, P.A.: The Selberg zeta function and a local trace formula for Kleinian groups. J. Reine Angew. Math. 410, 116–152 (1990)

    MathSciNet  MATH  Google Scholar 

  16. Perry, P.A.: Spectral theory, dynamics, and Selberg’s zeta function for Kleinian groups. In: Dynamical, Spectral, and Arithmetic Zeta Functions (San Antonio, TX, 1999). Contemporary Mathematics, vol. 290, pp. 145–165. American Mathematical Society, Providence (2001)

    Google Scholar 

  17. Perry, P.A.: The spectral geometry of geometrically finite hyperbolic manifolds. Festschrift for the Sixtieth Birthday of Barry Simon. Proc. Sympos. Pure Math. 76, 289–327 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ruelle, D.: Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34, 231–242 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sarnak, P.: Determinants of Laplacians. Commun. Math. Phys. 110, 113–120 (1987)

    Article  MathSciNet  Google Scholar 

  20. Venkov, A.B.: Spectral Theory of Automorphic Functions and Its Applications. Kluwer Academic Publishers, Dordrecht (1990)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borthwick, D. (2016). Selberg Zeta Function. In: Spectral Theory of Infinite-Area Hyperbolic Surfaces. Progress in Mathematics, vol 318. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-33877-4_10

Download citation

Publish with us

Policies and ethics