Skip to main content

Supervised Local Pattern Mining

  • Chapter
  • First Online:
Pattern Mining with Evolutionary Algorithms

Abstract

Pattern mining is considered as a really interesting task for the extraction of hidden knowledge in the form of patterns. The extraction of such subsequences, substructures or itemsets that represent any type of homogeneity and regularity in data has been carried out from unlabeled data. However, there are many research areas that aim at discovering patterns in the form of rules induced from labeled data. Hence, it is interesting to discover patterns and associations from a supervised point of view since a single item or a set of them can be considered as distinctive. This task, which is known as supervised local pattern mining, is described in this chapter, including different areas such as contrast set mining, emerging pattern mining, and subgroup discovery. This chapter is mainly focused on the subgroup discovery task, which is widely known in the field of supervised local pattern mining. Here, an exhaustive description about this task is provided, including some important quality measures in the field. Then, this chapter includes different evolutionary approaches for subgroup discovery. Finally, this chapter includes an analysis of other different approaches proposed for mining and quantifying local patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Abudawood and P. Flach. Evaluation measures for multi-class subgroup discovery. In W. Buntine, M. Grobelnik, D. Mladenić, and J. Shawe-Taylor, editors, Machine Learning and Knowledge Discovery in Databases, volume 5781 of Lecture Notes in Computer Science, pages 35–50. Springer Berlin Heidelberg, 2009.

    Chapter  Google Scholar 

  2. C. C. Aggarwal and J. Han. Frequent Pattern Mining. Springer International Publishing, 2014.

    Book  MATH  Google Scholar 

  3. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD Conference ’93, pages 207–216, Washington, DC, USA, 1993.

    Google Scholar 

  4. J. Alípio, F. Pereira, and P. J. Azevedo. Visual interactive subgroup discovery with numerical properties of interest. In L. Todorovski, N. Lavrač, and K. Jantke, editors, Discovery Science, volume 4265 of Lecture Notes in Computer Science, pages 301–305. Springer Berlin Heidelberg, 2006.

    Chapter  Google Scholar 

  5. M. L. Antonie and O. R. Zaïane. Text Document Categorization by Term Association. In Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM ’02, pages 19–26, Washington, DC, USA, 2002. IEEE Computer Society.

    Google Scholar 

  6. M. Atzmueller. Subgroup Discovery - Advanced Review. WIREs: Data Mining and Knowledge Discovery, 5:35–49, 2015.

    Google Scholar 

  7. M. Atzmueller and F. Puppe. SD-Map – A Fast Algorithm for Exhaustive Subgroup Discovery. In Proceedings of the 10th European Symposium on Principles of Data Mining and Knowledge Discovery, PKDD ’06, pages 6–17, Berlin, Germany, 2006.

    Google Scholar 

  8. S. D. Bay and M. J. Pazzani. Detecting Group Differences: Mining Contrast Sets. Data Mining and Knowledge Discovery, 5(3):213–246, 2001.

    Article  MATH  Google Scholar 

  9. M. Boley and H. Grosskreutz. Non-redundant subgroup discovery using a closure system. In Proceedings of the 2009 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML/PKDD 2009, pages 179–194, Bled, Slovenia, September 2009. Springer.

    Google Scholar 

  10. O. Bousquet, U. Luxburg, and G. Ratsch. Advanced Lectures On Machine Learning. SpringerVerlag, 2004.

    Book  MATH  Google Scholar 

  11. C. J. Carmona, P. González, M. J. del Jesus, and F. Herrera. NMEEF-SD: Non-dominated multiobjective evolutionary algorithm for extracting fuzzy rules in subgroup discovery. IEEE Transactions on Fuzzy Systems, 18(5):958–970, 2010.

    Article  Google Scholar 

  12. C. J. Carmona, P. González, M. J. del Jesus, M. Navío-Acosta, and L. Jimënez-Trevino. Evolutionary fuzzy rule extraction for subgroup discovery in a psychiatric emergency department. Soft Computing, 15(12):2435–2448, 2011.

    Article  Google Scholar 

  13. C. J. Carmona, P. González, M. J. del Jesus, and F. Herrera. Overview on evolutionary subgroup discovery: analysis of the suitability and potential of the search performed by evolutionary algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(2): 87–103, 2014.

    Google Scholar 

  14. P. Clark and T. Niblett. The cn2 induction algorithm. Machine Learning, 3(4):261–283, 1989.

    Google Scholar 

  15. C. A. Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

    MATH  Google Scholar 

  16. K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan. A Fast Elitist Multi-Objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6:182–197, 2000.

    Article  Google Scholar 

  17. M. J. del Jesus, P. González, F. Herrera, and M. Mesonero. Evolutionary fuzzy rule induction process for subgroup discovery: A case study in marketing. IEEE Transactions on Fuzzy Systems, 15(4):578–592, 2007.

    Article  Google Scholar 

  18. G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences. In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’99, pages 43–52, New York, NY, USA, 1999.

    Google Scholar 

  19. G. Dong and J. Li. Emerging patterns. In L. Liu and M. T. Özsu, editors, Encyclopedia of Database Systems, pages 985–988. Springer US, 2009.

    Google Scholar 

  20. W. Duivesteijn and A. J. Knobbe. Exploiting false discoveries - statistical validation of patterns and quality measures in subgroup discovery. In Proceedings of the 11th IEEE International Conference on Data Mining, ICDM 2011, pages 151–160, Vacouver, BC, Canada, December 2011.

    Google Scholar 

  21. W. Duivesteijn, A. J. Knobbe, A. Feelders, and M. van Leeuwen. Subgroup discovery meets Bayesian networks – an exceptional model mining approach. In Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM 2010, pages 158–167, Sydney, Australia, December 2010. IEEE Computer Society.

    Google Scholar 

  22. D. Dumitrescu, B. Lazzerini, L. C. Jain, and A. Dumitrescu. Evolutionary Computation. CRC Press, Inc., Boca Raton, FL, USA, 2000.

    MATH  Google Scholar 

  23. H. Fan and K. Ramamohanarao. Efficiently mining interesting emerging patterns. In G. Dong, C. Tang, and W. Wang, editors, Advances in Web-Age Information Management, pages 189–201. Springer Berlin Heidelberg, 2003.

    Chapter  Google Scholar 

  24. ssss D. Gamberger and N. Lavrac. Expert-guided subgroup discovery: Methodology and application. Journal of Artificial Intelligence Research, 17:501–527, 2002.

    Google Scholar 

  25. P. González-Espejo, S. Ventura, and F. Herrera. A Survey on the Application of Genetic Programming to Classification. IEEE Transactions on Systems, Man and Cybernetics: Part C, 40(2):121–144, 2010.

    Article  Google Scholar 

  26. H. Grosskreutz and S. Ruping. On subgroup discovery in numerical domains. Data Mining and Knowledge Discovery, 19(2):210–226, 2009.

    Article  MathSciNet  Google Scholar 

  27. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.

    MATH  Google Scholar 

  28. J. Han, J. Pei, Y. Yin, and R. Mao. Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowledge Discovery, 8:53–87, 2004.

    Article  MathSciNet  Google Scholar 

  29. F. Herrera, C. J. Carmona, P. González, and M. J. del Jesus. An overview on subgroup discovery: Foundations and applications. Knowledge and Information Systems, 29(3):495–525, 2011.

    Article  Google Scholar 

  30. R. J. Hilderman and T. Peckham. A statistically sound alternative approach to mining contrast sets. In Proceedings of the 4th Australasian Data Mining Conference, AusDM 2005, pages 157–172, Sydney, Australia, 2005.

    Google Scholar 

  31. Viktor Jovanoski and Nada Lavrač. Classification rule learning with APRIORI-C. In Proceedings of the 10th Portuguese Conference on Artificial Intelligence on Progress in Artificial Intelligence, Knowledge Extraction, Multi-agent Systems, Logic Programming and Constraint Solving, EPIA ’01, pages 44–51, London, UK, 2001. Springer-Verlag.

    Google Scholar 

  32. B. Kavsek and N. Lavrač. APRIORI-SD: Adapting association rule learning to subgroup discovery. Applied Artificial Intelligence, 20(7):543–583, 2006.

    Article  Google Scholar 

  33. W. Kloesgen and M. May. Census data mining an application. In In Proceedings of the 6th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 2002, pages 733–739, Helsinki, Finland, 2002. Springer-Verlag London.

    Google Scholar 

  34. W. Klösgen. Explora: A multipattern and multistrategy discovery assistant. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 249–271. American Association for Artificial Intelligence, 1996.

    Google Scholar 

  35. N. Lavrač, B. Kavšek, P. Flach, and L. Todorovski. Subgroup discovery with cn2-sd. Journal of Machine Learning Research, 5:153–188, December 2004.

    Google Scholar 

  36. D. Leman, A. Feelders, and A. J. Knobbe. Exceptional model mining. In Proceedings of the European Conference in Machine Learning and Knowledge Discovery in Databases, volume 5212 of ECML/PKDD 2008, pages 1–16, Antwerp, Belgium, 2008. Springer.

    Google Scholar 

  37. J. Li and L. Wong. Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics, 18(5):725–734, 2002.

    Article  Google Scholar 

  38. J. Lin and E. J. Keogh. Extending the notion of contrast sets to time series and multimedia data. In Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 2006, pages 284–296, Berlin, Germany, 2006.

    Google Scholar 

  39. J. M. Luna, J. R. Romero, C. Romero, and S. Ventura. On the use of genetic programming for mining comprehensible rules in subgroup discovery. IEEE Transactions on Cybernetics, 44(12):2329–2341, 2014.

    Article  Google Scholar 

  40. R. McKay, N. Hoai, P. Whigham, Y. Shan, and M. O’Neill. Grammar-based Genetic Programming: a Survey. Genetic Programming and Evolvable Machines, 11:365–396, 2010.

    Article  Google Scholar 

  41. K. Moreland and K. Truemper. Discretization of target attributes for subgroup discovery. In Proceedings of the 6th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2009, pages 44–52, Leipzig, Germany, 2009. Springer.

    Google Scholar 

  42. M. Mueller, R. Rosales, H. Steck, S. Krishnan, B. Rao, and S. Kramer. Subgroup discovery for test selection: A novel approach and its application to breast cancer diagnosis. In N. Adams, C. Robardet, A. Siebes, and J. F. Boulicaut, editors, Advances in Intelligent Data Analysis VIII, volume 5772 of Lecture Notes in Computer Science, pages 119–130. Springer Berlin Heidelberg, 2009.

    Google Scholar 

  43. P. K. Novak, N. Lavrač, and G. I. Webb. Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research, 10:377–403, 2009.

    MATH  Google Scholar 

  44. V. Pachón, J. Mata, J. L. Domínguez, and M. J. Maña. A multi-objective evolutionary approach for subgroup discovery. In Proceedings of the 5th International Conference on Hybrid Artificial Intelligence Systems, HAIS 2010, pages 271–278, San Sebastian, Spain, 2010. Springer.

    Google Scholar 

  45. D. Rodriguez, R. Ruiz, J. C. Riquelme, and J. S. Aguilar-Ruiz. Searching for rules to detect defective modules: A subgroup discovery approach. Information Sciences, 191:14–30, 2012.

    Article  Google Scholar 

  46. P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison Wesley, 2005.

    Google Scholar 

  47. T. T. Wong and K. L. Tseng. Mining negative contrast sets from data with discrete attributes. Expert Systems with Applications, 29(2):401–407, 2005.

    Article  Google Scholar 

  48. S. Wrobel. An algorithm for multi-relational discovery of subgroups. In Proceedings of the 1st European Symposium on Principles of Data Mining and Knowledge Discovery, PKDD ’97, pages 78–87, London, UK, UK, 1997. Springer-Verlag.

    Google Scholar 

  49. L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning I,II,III. Information Sciences, 8–9:199–249, 301–357, 43–80, 1975.

    Google Scholar 

  50. A. Zimmermann and S. Nijssen. Supervised pattern mining and applications to classification. In C. C. Aggarwal and J. Han, editors, Frequent Pattern Mining, pages 425–442. Springer International Publishing, 2014.

    Google Scholar 

  51. A. Zimmermann, B. Bringmann, and R. Ulrich. Fast, effective molecular feature mining by local optimization. In Proceedings of the 2010 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML/PKDD 2010, pages 563–578, Barcelona, Spain, 2010. Springer.

    Google Scholar 

  52. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In Proceedings of the 2001 conference on Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems, EUROGEN 2001, pages 95–100, Athens, Greece, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ventura, S., Luna, J.M. (2016). Supervised Local Pattern Mining. In: Pattern Mining with Evolutionary Algorithms. Springer, Cham. https://doi.org/10.1007/978-3-319-33858-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33858-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33857-6

  • Online ISBN: 978-3-319-33858-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics