Advertisement

Multiobjective Approaches in Pattern Mining

  • Sebastián Ventura
  • José María Luna
Chapter

Abstract

In pattern mining, solutions tend to be evaluated according to several conflicting quality measures and, sometimes, these measures have to be optimized simultaneously. The problem of optimizing more than one objective function is known as multiobjective optimization, which together with evolutionary computation have given rise to evolutionary multiobjective optimization. This issue is well addressed in this chapter, which describes the usefulness of evolutionary multiobjective optimization in the pattern mining field. First, some fundamental concepts of evolutionary multiobjective optimization are introduced, including metrics to evaluate the quality of the solutions, and measures to be combined for the pattern mining problem. Then, different multiobjective approaches in the pattern mining field are described, which are divided into genetic algorithms, genetic programming approaches and other kind of algorithms like evolutionary computation and swarm intelligence. Finally, some useful real-world applications are analysed.

Keywords

Pattern Mining Field Multiobjective Approach Pareto-optimal Front Multiobjective Evolutionary Algorithms (MOEAs) Single Quality Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Abraham, L.C. Jain, and R. Goldberg. Evolutionary Multiobjective Optimization: Theoretical Advances and Applications. Advanced Information and Knowledge Processing. Springer, 2005.CrossRefzbMATHGoogle Scholar
  2. 2.
    C. C. Aggarwal and J. Han. Frequent Pattern Mining. Springer International Publishing, 2014.CrossRefzbMATHGoogle Scholar
  3. 3.
    B. Alatas, E. Akin, and A. Karci. MODENAR: Multi-objective Differential Evolution Algorithm for Mining Numeric Association Rules. Applied Soft Computing, 8:646–656, 2008.CrossRefGoogle Scholar
  4. 4.
    S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic Itemset Counting and Implication Rules for Market Basket Data. In Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, SIGMOD ’97, pages 255–264, Tucson, Arizona, USA, 1997. ACM.Google Scholar
  5. 5.
    C. A. Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.zbMATHGoogle Scholar
  6. 6.
    L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.Google Scholar
  7. 7.
    K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., New York, NY, USA, 2001.zbMATHGoogle Scholar
  8. 8.
    K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan. A Fast Elitist Multi-Objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6:182–197, 2000.CrossRefGoogle Scholar
  9. 9.
    Carlos M. Fonseca and Peter J. Fleming. Genetic algorithms for multiobjective optimization: Formulation discussion and generalization. In Proceedings of the 5th International Conference on Genetic Algorithms, pages 416–423, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.Google Scholar
  10. 10.
    L. Geng and H. J. Hamilton. Interestingness Measures for Data Mining: A Survey. ACM Computing Surveys, 38, 2006.Google Scholar
  11. 11.
    A. Ghosh and B. Nath. Multi-objective Rule Mining Using Genetic Algorithms. Information Science, 163(1–3):123–133, 2004.MathSciNetCrossRefGoogle Scholar
  12. 12.
    D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.zbMATHGoogle Scholar
  13. 13.
    F. Guillet and H. Hamilton. Quality Measures in Data Mining. Springer Berlin / Heidelberg, 2007.CrossRefzbMATHGoogle Scholar
  14. 14.
    H. Ishibuchi, I. Kuwajima, and Y. Nojima. Multiobjective association rule mining. In Proceedings of the Multiobjective Problem Solving from Nature, Reykjavik, Iceland, 2006.Google Scholar
  15. 15.
    A. Jiménez, F. Berzal, and J. C. Cubero. Interestingness measures for association rules within groups. In Proceedings of the 13th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2010, pages 298–307. Springer, 2010.Google Scholar
  16. 16.
    H. Li and Q. Zhang. Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii. IEEE Transactions on Evolutionary Computation, 13(2):284–302, 2009.CrossRefGoogle Scholar
  17. 17.
    B. Liu, W. Hsu, S. Chen, and Y. Ma. Analyzing the subjective interestingness of association rules. IEEE Intelligent Systems, 15(5):47–55, 2000.CrossRefGoogle Scholar
  18. 18.
    J. M. Luna, J. R. Romero, and S. Ventura. G3PARM: A Grammar Guided Genetic Programming Algorithm for Mining Association Rules. In Proceedings of the IEEE Congress on Evolutionary Computation, IEEE CEC 2010, pages 2586–2593, Barcelona, Spain, 2010.Google Scholar
  19. 19.
    J. M. Luna, J. R. Romero, and S. Ventura. Design and behavior study of a grammar-guided genetic programming algorithm for mining association rules. Knowledge and Information Systems, 32(1):53–76, 2012.CrossRefGoogle Scholar
  20. 20.
    J. M. Luna, J. R. Romero, and S. Ventura. Grammar-based multi-objective algorithms for mining association rules. Data & Knowledge Engineering, 86:19–37, 2013.CrossRefGoogle Scholar
  21. 21.
    D. Martín, A. Rosete, J. Alcalá, and F. Herrera. A new multiobjective evolutionary algorithm for mining a reduced set of interesting positive and negative quantitative association rules. IEEE Transactions on Evolutionary Computation, 18(1):54–69, 2014.CrossRefGoogle Scholar
  22. 22.
    D. Martín, A. Rosete, J. Alcalá-Fdez, and F. Herrera. Qar-cip-nsga-ii: A new multi-objective evolutionary algorithm to mine quantitative association rules. Information Sciences, 258:1–28, 2014.MathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Martínez-Ballesteros, I. A. Nepomuceno-Chamorro, and J. C. Riquelme. Discovering gene association networks by multi-objective evolutionary quantitative association rules. Journal of Computer System Sciences, 80(1):118–136, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    B. Minaei-Bidgoli, R. Barmaki, and M. Nasiri. Mining numerical association rules via multi-objective genetic algorithms. Information Sciences, 233:15–24, 2013.CrossRefGoogle Scholar
  25. 25.
    J. L. Olmo, J. M. Luna, J. R. Romero, and S. Ventura. Association rule mining using a multi-objective grammar-based ant programming algorithm. In Proceedings of the 11th International Conference on Intelligent Systems Design and Applications, ISDA 2011, pages 971–977, Cordoba, Spain, 2011.Google Scholar
  26. 26.
    J. L. Olmo, J. M. Luna, J. R. Romero, and S. Ventura. Mining association rules with single and multi-objective grammar guided ant programming. Integrated Computer-Aided Engineering, 20(3):217–234, 2013.Google Scholar
  27. 27.
    G. Piatetsky-Shapiro. Discovery, analysis and presentation of strong rules. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, pages 229–248. AAAI Press, 1991.Google Scholar
  28. 28.
    H. R. Qodmanan, M. Nasiri, and B. Minaei-Bidgoli. Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence. Expert Systems with Applications, 38:288–298, 2011.CrossRefGoogle Scholar
  29. 29.
    P. M. Reed, B. S. Minsker, and D. E. Goldberg. Designing a new elitist nondominated sorted genetic algorithm for a multiobjective long term groundwater monitoring application. In Proceedings of the 2001 Genetic and Evolutionary Computation Conference, GECCO 2001, pages 352–356, San Francisco, California, 2001.Google Scholar
  30. 30.
    T. Scheffer. Finding association rules that trade support optimally against confidence. In Proceedings of the 5th European Conference of Principles and Practice of Knowledge Discovery in Databases, PKDD 2001, pages 424–435, Freiburg, Germany, 2001.Google Scholar
  31. 31.
    P. D. Shenoy, K. G. Srinivasa, K. R. Venugopal, and L. M. Patnaik. Dynamic association rule mining using genetic algorithms. Intelligent Data Analysis, 9(5):439–453, 2005.Google Scholar
  32. 32.
    W. Stadler. A survey of multicriteria optimization or the vector maximum problem, part i: 1776–1960. Journal of Optimization Theory and Applications, 29(1):1–52, 1979.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    T. J. Stewart, R. Janssen, and M. van Herwijnen. A genetic algorithm approach to multiobjective land use planning. Computers and Operations Research, 31(14):2293–2313, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    P. Tan and V. Kumar. Interestingness Measures for Association Patterns: A Perspective. In Proceedings of the Workshop on Postprocessing in Machine Learning and Data Mining, KDD ’00, New York, USA, 2000.Google Scholar
  35. 35.
    D. A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Wright Patterson AFB, OH, USA, 1999. AAI9928483.Google Scholar
  36. 36.
    D. A. Van Veldhuizen and G. B. Lamont. Multiobjective evolutionary algorithm research: A history and analysis. Technical report, Technical Report TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohiod, 1998.Google Scholar
  37. 37.
    C. Zhang and S. Zhang. Association rule mining: models and algorithms. Springer Berlin / Heidelberg, 2002.CrossRefzbMATHGoogle Scholar
  38. 38.
    E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2):173–195, 2000.CrossRefGoogle Scholar
  39. 39.
    E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In Proceedings of the 2001 conference on Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems, EUROGEN 2001, pages 95–100, Athens, Greece, 2001.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sebastián Ventura
    • 1
  • José María Luna
    • 1
  1. 1.Department of Computer Science and Numerical AnalysisUniversity of CordobaCordobaSpain

Personalised recommendations