Genetic Programming in Pattern Mining

  • Sebastián Ventura
  • José María Luna


This chapter describes the use of genetic programming for the mining of patterns of interest and the extraction of accurate relationships between patterns. The current chapter first describes the canonical representation of genetic programming and the use of grammars to restrict the search space. Then, it describes different approaches based on genetic programming for mining association rules of interest, paying special attention to the grammars used to restrict the search space, the genetic operators applied and the fitness functions considered by different approaches. Finally, this chapter deals with a series of application domains in which the use of genetic programming for mining association rules has been a successfully applied.


Fitness Function Association Rule Relational Database Genetic Operator Pattern Mining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. C. Aggarwal and J. Han. Frequent Pattern Mining. Springer International Publishing, 2014.CrossRefzbMATHGoogle Scholar
  2. 2.
    W. Banzhaf, F. D. Francone, R. E. Keller, and P. Nordin. Genetic programming: an introduction. On the automatic evolution of computer programs and its applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.Google Scholar
  3. 3.
    M. J. del Jesús, J. A. Gámez, P. González, and J. M. Puerta. On the discovery of association rules by means of evolutionary algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(5):397–415, 2011.Google Scholar
  4. 4.
    A. A. Freitas. Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer-Verlag Berlin Heidelberg, 2002.CrossRefzbMATHGoogle Scholar
  5. 5.
    M. Fuchs. Crossover versus mutation: an empirical and theoretical case study. In In Proceedings of the third annual conference on Genetic Programming, GP ’98, pages 78–85, 1998.Google Scholar
  6. 6.
    M. Gendreau and J. Potvin. Handbook of Metaheuristics. Springer Publishing Company, Incorporated, 2nd edition, 2010.CrossRefzbMATHGoogle Scholar
  7. 7.
    B. Goethals. Survey on Frequent Pattern Mining. Technical report, Technical report, HIIT Basic Research Unit, Department of Computer Science, University of Helsinki, Finland, 2003.Google Scholar
  8. 8.
    B. Goethals, W. Le Page, and M. Mampaey. Mining interesting sets and rules in relational databases. In Proceedings of the ACM Symposium on Applied Computing, pages 997–1001, Sierre, Switzerland, March 2010.Google Scholar
  9. 9.
    B. Goethals, S. Moens, and J. Vreeken. MIME: A Framework for Interactive Visual Pattern Mining. In D. Gunopulos, T. Hofmann, D. Malerba, and M. Vazirgiannis, editors, Machine Learning and Knowledge Discovery in Databases, volume 6913 of Lecture Notes in Computer Science, pages 634–637. Springer Berlin Heidelberg, 2011.Google Scholar
  10. 10.
    P. González-Espejo, S. Ventura, and F. Herrera. A Survey on the Application of Genetic Programming to Classification. IEEE Transactions on Systems, Man and Cybernetics: Part C, 40(2):121–144, 2010.CrossRefGoogle Scholar
  11. 11.
    M. Gorawski and P. Jureczek. Extensions for Continuous Pattern Mining. In Proceedings of the 2011 International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2011, pages 194–203, Norwich, UK, 2011.Google Scholar
  12. 12.
    J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, 1975.Google Scholar
  13. 13.
    V. C. Jensen and N. Soporkar. Frequent itemset counting across multiple tables. In Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PADKK ’00, pages 49–61, Kyoto, Japan, April 2000.Google Scholar
  14. 14.
    A. Jiménez, F. Berzal, and J. C. Cubero. Using trees to mine multirelational databases. Data Mining and Knowledge Discovery, 24(1):1–39, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    C. S. Kanimozhi and A. Tamilarasi. An automated association rule mining technique with cumulative support thresholds. International Journal Open Problems in Computer Science and Mathematics, 2(3):427–438, 2009.Google Scholar
  16. 16.
    Y. S. Koh and N. Rountree. Finding sporadic rules using apriori-inverse. In Proceedings of the 9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD’05, pages 97–106, Hanoi, Vietnam, 2005.Google Scholar
  17. 17.
    Y. S. Koh and N. Rountree. Rare Association Rule Mining and Knowledge Discovery: Technologies for Infrequent and Critical Event Detection. Information Science Reference, Hershey, New York, 2010.CrossRefGoogle Scholar
  18. 18.
    J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection (Complex Adaptive Systems). A Bradford Book, 1 edition, 1992.Google Scholar
  19. 19.
    T. Li and X. Li. Novel alarm correlation analysis system based on association rules mining in telecommunication networks. Information Sciences, 180(16):2960–2978, 2010.CrossRefGoogle Scholar
  20. 20.
    S. Luke and L. Spector. A comparison of crossover and mutation in genetic programming. In Proceedings of the Second Annual Conference on Genetic Programmin, GP ’97, pages 240–248. Morgan Kaufmann, 1997.Google Scholar
  21. 21.
    J. M. Luna, J. R. Romero, and S. Ventura. G3PARM: A Grammar Guided Genetic Programming Algorithm for Mining Association Rules. In Proceedings of the IEEE Congress on Evolutionary Computation, IEEE CEC 2010, pages 2586–2593, Barcelona, Spain, 2010.Google Scholar
  22. 22.
    J. M. Luna, J. R. Romero, and S. Ventura. Design and behavior study of a grammar-guided genetic programming algorithm for mining association rules. Knowledge and Information Systems, 32(1):53–76, 2012.CrossRefGoogle Scholar
  23. 23.
    J. M. Luna, J. R. Romero, and S. Ventura. On the adaptability of G3PARM to the extraction of rare association rules. Knowledge and Information Systems, 38(2):391–418, 2014.CrossRefGoogle Scholar
  24. 24.
    J. M. Luna, J. R. Romero, C. Romero, and S. Ventura. Reducing gaps in quantitative association rules: a genetic programming free-parameter algorithm. Integrated Computer Aided Engineering, 21(4):321–337, 2014.Google Scholar
  25. 25.
    J. M. Luna, A. Cano, and S. Ventura. Genetic programming for mining association rules in relational database environments. In A. H. Gandomi, A. H. Alavi, and C. Ryan, editors, Handbook of Genetic Programming Applications, pages 431–450. Springer International Publishing, 2015.Google Scholar
  26. 26.
    J. M. Luna, C. Romero, J. R. Romero, and S. Ventura. An Evolutionary Algorithm for the Discovery of Rare Class Association Rules in Learning Management Systems. Applied Intelligence, 42(3):501–513, 2015.CrossRefGoogle Scholar
  27. 27.
    J. Mata, J. L. Alvarez, and J. C. Riquelme. Mining numeric association rules with genetic algorithms. In Proceedings of the 5th International Conference on Artificial Neural Networks and Genetic Algorithms, ICANNGA 2001, pages 264–267, Taipei, Taiwan, 2001.Google Scholar
  28. 28.
    R. McKay, N. Hoai, P. Whigham, Y. Shan, and M. O’Neill. Grammar-based Genetic Programming: a Survey. Genetic Programming and Evolvable Machines, 11:365–396, 2010.CrossRefGoogle Scholar
  29. 29.
    E. K. K. Ng, A. W. Fu, and K. Wang. Mining association rules from stars. In In Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM 2002, pages 322–329, Maebashi City, Japan, 2002.Google Scholar
  30. 30.
    N. Ordoñez, C. Ezquerra and C. Santana. Constraining and Summarizing Association Rules in Medical Data. Knowledge and Information Systems, 9, 2006.Google Scholar
  31. 31.
    R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to Genetic Programming. Lulu Enterprises, UK Ltd, 2008.Google Scholar
  32. 32.
    A. Rahman, C. I. Ezeife, and A. K. Aggarwal. Wifi miner: An online apriori-infrequent based wireless intrusion system. In Proceedings of the 2nd International Workshop in Knowledge Discovery from Sensor Data, Sensor-KDD ’08, pages 76–93, Las Vegas, USA, 2008.Google Scholar
  33. 33.
    C. Romero and S. Ventura. Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 40(6):601–618, 2010.CrossRefGoogle Scholar
  34. 34.
    C. Romero, S. Ventura, M. Pechenizkiy, and R. Baker. Handbook of Educational Data Mining. Data Mining and Knowledge Discovery Series. CRC Press, 2010.CrossRefGoogle Scholar
  35. 35.
    C. Romero, A. Zafra, J. M. Luna, and S. Ventura. Association rule mining using genetic programming to provide feedback to instructors from multiple-choice quiz data. Expert Systems, 30(2):162–172, 2013.CrossRefGoogle Scholar
  36. 36.
    D. Sánchez, J. M. Serrano, L. Cerda, and M. A. Vila. Association Rules Applied to Credit Card Fraud Detection. Expert systems with applications, (36):3630–3640, 2008.CrossRefGoogle Scholar
  37. 37.
    P. A. Whigham. Grammatically-based genetic programming. In Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, pages 33–41, Tahoe City, California, USA, 1995.Google Scholar
  38. 38.
    M. L. Wong and K. S. Leung. Data Mining Using Grammar-Based Genetic Programming and Applications. Kluwer Academic Publishers, Norwell, MA, USA, 2000.zbMATHGoogle Scholar
  39. 39.
    X. Yan, C. Zhang, and S. Zhang. Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support. Expert Systems with Appications, 36:3066 – 3076, 2009.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sebastián Ventura
    • 1
  • José María Luna
    • 1
  1. 1.Department of Computer Science and Numerical AnalysisUniversity of CordobaCordobaSpain

Personalised recommendations