Advertisement

Quality Measures in Pattern Mining

  • Sebastián Ventura
  • José María Luna
Chapter

Abstract

In this chapter different quality measures to evaluate the interest of the patterns discovered in the mining process are described. Patterns represent major features of data so their interestingness should be accordingly quantified by considering metrics that determine how representative a specific pattern is for the dataset. Nevertheless, a pattern can also be of interest for a user despite the fact that this pattern does not describe useful and intrinsic properties of data. Thus, any quality measure can be divided into two main groups: objective and subjective quality measures. Whereas objective measures describe statistical properties of data, subjective quality measures take into account both the data properties and external knowledge provided by the expert in the application domain.

Keywords

National Quality Measures Pattern Mining Original Contingency Table Objective Interestingness Measures Association Rules 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. C. Aggarwal and J. Han. Frequent Pattern Mining. Springer International Publishing, 2014.CrossRefzbMATHGoogle Scholar
  2. 2.
    R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases. In Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94, pages 487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.Google Scholar
  3. 3.
    R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD Conference ’93, pages 207–216, Washington, DC, USA, 1993.Google Scholar
  4. 4.
    J. L. Balcázar and F. Dogbey. Evaluation of association rule quality measures through feature extraction. In Proceedings of the 12th International Symposium on Advances in Intelligent Data Analysis, IDA 2013, pages 68–79, London, UK, October 2013.Google Scholar
  5. 5.
    F. Berzal, I. Blanco, D. Sánchez, and M. A. Vila. Measuring the Accuracy and Interest of Association Rules: A new Framework. Intelligent Data Analysis, 6(3):221–235, 2002.zbMATHGoogle Scholar
  6. 6.
    M. Bhuiyan, S. Mukhopadhyay, and M. A. Hasan. Interactive pattern mining on hidden data: A sampling-based solution. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12, pages 95–104, New York, NY, USA, 2012. ACM.Google Scholar
  7. 7.
    M. Böttcher, G. Ruß, D. Nauck, and R. Kruse. From Change Mining to Relevance Feedback: A Unified View on Assessing Rule Interestingness Post-Mining of Association Rules: Techniques for Effective Knowledge Extraction. In Y. Zhao, L. Cao, and C. Zhang, editors, Information Science Reference, pages 12–37. IGI Global, Hershey, New York, 2009.Google Scholar
  8. 8.
    S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic Itemset Counting and Implication Rules for Market Basket Data. In Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, SIGMOD ’97, pages 255–264, Tucson, Arizona, USA, 1997. ACM.Google Scholar
  9. 9.
    U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining. American Association for Artificial Intelligence, Menlo Park, CA, USA, 1996.Google Scholar
  10. 10.
    A. A. Freitas. Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer-Verlag Berlin Heidelberg, 2002.CrossRefzbMATHGoogle Scholar
  11. 11.
    L. Geng and H. J. Hamilton. Interestingness Measures for Data Mining: A Survey. ACM Computing Surveys, 38, 2006.Google Scholar
  12. 12.
    B. Goethals, S. Moens, and J. Vreeken. MIME: A Framework for Interactive Visual Pattern Mining. In D. Gunopulos, T. Hofmann, D. Malerba, and M. Vazirgiannis, editors, Machine Learning and Knowledge Discovery in Databases, volume 6913 of Lecture Notes in Computer Science, pages 634–637. Springer Berlin Heidelberg, 2011.Google Scholar
  13. 13.
    F. Guillet and H. Hamilton. Quality Measures in Data Mining. Springer Berlin / Heidelberg, 2007.CrossRefzbMATHGoogle Scholar
  14. 14.
    J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.zbMATHGoogle Scholar
  15. 15.
    A. Jiménez, F. Berzal, and J. C. Cubero. Interestingness measures for association rules within groups. In Proceedings of the 13th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2010, pages 298–307. Springer, 2010.Google Scholar
  16. 16.
    N. Lavrač, P. A. Flach, and B. Zupan. Rule Evaluation Measures: A Unifying View. In Proceedings of the 9th International Workshop on Inductive Logic Programming, ILP ’99, pages 174–185, London, UK, 1999. Springer-Verlag.Google Scholar
  17. 17.
    J. M. Luna, J. R. Romero, C. Romero, and S. Ventura. On the use of genetic programming for mining comprehensible rules in subgroup discovery. IEEE Transactions on Cybernetics, 44(12):2329–2341, 2014.CrossRefGoogle Scholar
  18. 18.
    A. Merceron and K. Yacef. Interestingness measures for association rules in educational data. In Proceedings of the 1st International Conference on Educational Data Mining, EDM 2008, pages 57–66, Montreal, Canada, 2008.Google Scholar
  19. 19.
    B. Padmanabhan and A. Tuzhilin. Unexpectedness as a Measure of Interestingness in Knowledge Discovery. In Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’99, pages 275–281, New York, NY, USA, 1999. AAAI Press.Google Scholar
  20. 20.
    G. Piatetsky-Shapiro. Discovery, analysis and presentation of strong rules. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, pages 229–248. AAAI Press, 1991.Google Scholar
  21. 21.
    C. Romero, J. M. Luna, J. R. Romero, and S. Ventura. RM-Tool: A framework for discovering and evaluating association rules. Advances in Engineering Software, 42(8):566–576, 2011.CrossRefGoogle Scholar
  22. 22.
    D. Sánchez, J. M. Serrano, L. Cerda, and M. A. Vila. Association Rules Applied to Credit Card Fraud Detection. Expert systems with applications, (36):3630–3640, 2008.CrossRefGoogle Scholar
  23. 23.
    T. Scheffer. Finding association rules that trade support optimally against confidence. In Proceedings of the 5th European Conference of Principles and Practice of Knowledge Discovery in Databases, PKDD 2001, pages 424–435, Freiburg, Germany, 2001.Google Scholar
  24. 24.
    E. H. Shortliffe and B. G. Buchanan. A model of inexact reasoning in medicine. Mathematical biosciences, 23:351–379, 1975.MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Silberschatz and A. Tuzhilin. On subjective measures of interestingness in knowledge discovery. In Proceedings of the 1st international conference on Knowledge Discovery and Data mining, pages 275–281, Montreal, Quebec, Canada, 1995. AAAI Press.Google Scholar
  26. 26.
    P. Tan and V. Kumar. Interestingness Measures for Association Patterns: A Perspective. In Proceedings of the Workshop on Postprocessing in Machine Learning and Data Mining, KDD ’00, New York, USA, 2000.Google Scholar
  27. 27.
    P. Tan, V. Kumar, and J. Srivastava. Selecting the right objective measure for association analysis. Information Systems, 29(4):293–313, 2004.CrossRefGoogle Scholar
  28. 28.
    M. van Leeuwen. Interactive data exploration using pattern mining. In A. H. Gandomi and Conor Alavi, A. H. Ryan, editors, Interactive Knowledge Discovery and Data Mining in Biomedical Informatics, volume 8401 of Lecture Notes in Computer Science, pages 169–182. Springer Berlin Heidelberg, 2015.Google Scholar
  29. 29.
    C. Zhang and S. Zhang. Association rule mining: models and algorithms. Springer Berlin / Heidelberg, 2002.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sebastián Ventura
    • 1
  • José María Luna
    • 1
  1. 1.Department of Computer Science and Numerical AnalysisUniversity of CordobaCordobaSpain

Personalised recommendations