Skip to main content

Life

  • Chapter
  • First Online:
A History of the Solar System
  • 1235 Accesses

Abstract

There is growing evidence for precursors of biomolecules in many parts of the solar system and, to judge from telescopic imaging from the ground and from space as well as from sampling of meteorites and comets, elsewhere in our galaxy and beyond its confines. Their age can be estimated on Earth and more controversially on Mars, while conditions that appear propitious for life can be identified and sometimes dated on other solar system bodies and on a number of exoplanets. The interaction between living and abiotic processes can now be traced in broad terms over much of the Earth’s 4.6 Gyr lifetime, to the benefit of both geology and evolutionary biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419-422

    Google Scholar 

  2. Alvarez LW, Alvarez WA, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208: 1095-1108

    Google Scholar 

  3. Bada J (2013) New insights into prebiotic chemistry from Stanley Miller’s spark discharge experiments. Chem Soc Rev 42: 2186-2196

    Google Scholar 

  4. Bahcall JN, Bahcall S (1985) The Sun’s motion perpendicular to the galactic plane. Nature 316: 706-708

    Google Scholar 

  5. Beatty JT and 8 others (2005) An obligately photosynthetic bacterial anaerobe from a dep-sea hydrothermal vent. Proc Nat Acad Sci 102: 9306-9310

    Google Scholar 

  6. Beaulieu S, Joyce K, Soule A (2010) Global distribution of hydrothermal vent fields. At http://www.interridge.org/irvents/maps

  7. Bedau MA, Cleland CE (2010) The nature of life. Cambridge Univ Press, Cambridge

    Google Scholar 

  8. Bell EA et al (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Nat Acad Sci 112:14518-14521

    Google Scholar 

  9. Benner SA (2010) Water: constraining biological chemistry and the origin of life. In: Lynden-Bell RM et al (eds) Water and life: the unique properties of H2O. CRC Press, Boca Raton FL, 157-176

    Google Scholar 

  10. Benton M (2003) When life nearly died. London, Thames and Hudson

    Google Scholar 

  11. Bishop S, Egli R (2011) Discovery prospects for a supernova signature of biogenic origin. Icarus 212: 960-962

    Google Scholar 

  12. Blank CE (2004) Evolutionary timing of the origins of mesophilic sulphate reduction and oxygenic photosynthesis: a phylogenetic dating approach. Geobiology 2:1-20

    Google Scholar 

  13. Breitschwerdt D et al (2016) The locations of recent supernovae near the Sun from modelling Fe transport. Nature 532:73-76

    Google Scholar 

  14. Burchell MJ (2004), Mann JR, Bunch AW (2004) Survival of bacteria and spores under extreme shock pressures. Mon Not R Astron Soc 352: 1273-1278

    Google Scholar 

  15. Burgess SD, Bowring S, Shen S-Z (2014) High-precision timeline for Earth’s most severe extinction. Proc Nat Acad Sci 111: 3316-3321

    Google Scholar 

  16. Cairns-Smith AG (1982) Genetic takeover and the mineral origins of life. Cambridge Univ Press, Cambridge

    Google Scholar 

  17. Cleaves HJ et al (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Preb Chem 38:105-115

    Google Scholar 

  18. Cleland CE and Chyba C (2002) Defining ‘life’. Orig Life Evol Biosph 32: 387-393

    Google Scholar 

  19. Conway Morris S (1998) The crucible of creation. Oxford Univ Press, Oxford

    Google Scholar 

  20. Corliss JB et al (1979) Submarine thermal springs on the Galápagos Rift. Science 203:1073-1083

    Google Scholar 

  21. Crawford IA et al (2010) Lunar palaeoregolith deposits as recorders of the galactic environment of the solar system and implications for astrobiology. Earth Moon Plan 107:75-85

    Google Scholar 

  22. Fimiani L and 12 others (2014) Evidence for deposition of interstellar material on the lunar surface. Lunar Planet Sci Conf 45, abs 1778

    Google Scholar 

  23. Fishbaugh KEW et al (2007) Geology and habitability of terrestrial planets. New York, Springer

    Google Scholar 

  24. Fox-Keller E (2000) The century of the gene. Oxford, Oxford UP

    Google Scholar 

  25. García-Hernández DA and 7 other (2010) Formation of fullerenes in H-containing planetary nebulae. Astrophys J Lett 724: L39-L43

    Google Scholar 

  26. Gargaud M et al (2012) Young Sun, early Earth and the origins of life. Heidelberg, Springer

    Google Scholar 

  27. Gibson EK Jr and 5 others (1999) Evidence for ancient martian life. Fifth Mars Int Conf, Abs 6142

    Google Scholar 

  28. Haldane JBS (1929) The origin of life. Repr. in New Biol 16, 1954, 12

    Google Scholar 

  29. Hartmann WK (2005) Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174:294-320

    Google Scholar 

  30. Hazen RM (2009) The emergence of patterning in life’s origin and evolution. Int J Dev Biol 53:683-692

    Google Scholar 

  31. Hazen RM (2013a) The story of Earth. New York, Penguin

    Google Scholar 

  32. Hazen RM (2013b) Paleomineralogy of the Hadean Eon: a preliminary species list. Am J Sci 3313:807-843

    Google Scholar 

  33. Hitchcock DR, Lovelock JE (1967) Life detection by atmospheric analysis. Icarua 7:147-159

    Google Scholar 

  34. Huggett RJ (2006) The natural history of the Earth. London, Routledge

    Google Scholar 

  35. Knie K et al (2004) 60Fe anomaly in a deep-sea manganese crust and implications for a nearby supernova source. Phys Rev Lett 93, 171103

    Google Scholar 

  36. Knoll AH (2003) Life on a young planet. Princeton, Princeton Univ Press

    Google Scholar 

  37. Knoll AH (2009) The coevolution of life and environments. Rend Fis Acc Lincei 20: 301-306

    Google Scholar 

  38. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467: 929-934

    Google Scholar 

  39. Lane N, Allen JF, Martin W (2010) How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32: 271-280

    Google Scholar 

  40. Lazcano A (2010) Historical development of origins research. Cold Spring Harb Perspect Biol 2. DOI:10.1101/cshperspect.a002089

    Google Scholar 

  41. Leduc S (1911) The mechanism of life. Rebman, London

    Google Scholar 

  42. Leitch EM, Vasisht G (1998) Mass extinctions and the Sun’s encounters with spiral arms. New Astron 3: 51-56

    Google Scholar 

  43. Loveloc3 k 1965 = 1969?Nature 207: 568-570

    Google Scholar 

  44. Lowell P (1908) Mars as the abode of life. McMillan, New York

    Google Scholar 

  45. Luisi PL (2015) Chemistry constraints on the origin of life. Isr J Chem 55:906-918

    Google Scholar 

  46. Lunine JI (2009) Saturn’ Titan: a strict test for life’s cosmic ubiquity. Proc Am Phil Soc 153:403-

    Google Scholar 

  47. Lwoff A (1957) The concept of virus. J Gen Microbiol 17: 239-253

    Google Scholar 

  48. Map of seafloor age after http://www.ngdc.noaa.gov/mgg/image/crustageposter.jpg. For earlier periods the planetary configuration would need adjustment

  49. McDermott JM et al (2015) Pathways for abiotic organic synthesis at submarine hydrothermal fields. Proc Nat Acad Sci 112:7668-7672

    Google Scholar 

  50. McKay DS and 8 others (1996) Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273: 924-930

    Google Scholar 

  51. Miller SJ (1953) A production of amino acids under possible primitive earth conditions. Science 130: 528-529

    Google Scholar 

  52. Mitarai S et al (2016) Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean. Proc Nat Acad Sci USA 113:2976-2981

    Google Scholar 

  53. Mitchell FJ, Ellis WL (1971) Surveyor III: bacterium isolated from lunar retrieved TV camera . In Levinson AA (ed) Proc 2nd Lunar Conf 3:2721-2733. MIT Press, Cambridge

    Google Scholar 

  54. Mojzsis SJ (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55-59

    Google Scholar 

  55. NASA Exoplanet Archive (18 April 2016) at Exoplanetarchive.ipc.caltech.edu

    Google Scholar 

  56. Nisbet EG (1985) The geological setting of the earliest life forms. J Mol Evol 21: 289-298

    Google Scholar 

  57. Oparin A (1924) The origin of life (Eng trans 1938: New York, Macmillan)

    Google Scholar 

  58. Pavlov AK and 6 others (2013) AD 775 pulse of cosmogenic radionuclides production as imprint of a Galactic gamma-ray burst. Mon Not Roy Astr Soc doi 10.1093/mnras/stt1468

  59. Pierazzo E, Chyba CF (2010) Amino acid survival in large cometary impacts. Meteor Planet Sci 34:909-918

    Google Scholar 

  60. Raisbeck G et al (2007) A search for supernova produced 244Pu in a marine sediment. Nucl Instr Meth Phys Res B 259: 673-676

    Google Scholar 

  61. Riding R (2011) The nature of stromatolites: 3500 million years of history and a century of research. In Reitner J et al (ed) Advances in stromatolite geobiology. Springer, Heidelberg, 29-74

    Google Scholar 

  62. Rubenstein EP, Schaefer BE (2000) Are superflares on solar analogues caused by extrasolar planets? Astrophys J 529:1031-1033

    Google Scholar 

  63. Rudwick M (2014) Earth’s deep history. Chicago, Univ Chicago Press

    Google Scholar 

  64. Russell MJ, Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29: 358-363

    Google Scholar 

  65. Russell MJ, Hall AJ, Martin W (2010) Serpentinization as a source of energy at the origin of life. Geobiology 8:355-371

    Google Scholar 

  66. Sadler PM (2006) Composite time lines: a means to leverage resolving power from radiosiotopic dates and biostratigraphy. Pap Paleont Soc 12: 145-170

    Google Scholar 

  67. Sagan C (1974) The origin of life in a cosmic context. Orig Life Evol Biosph 5: 459-505

    Google Scholar 

  68. Shoemaker EM (1959) Impact mechanics at Meteor Crater, Arizona. US Geol Surv, Open-File Rep

    Google Scholar 

  69. Stephenson FR (2014) Astronomical evidence relating to the observed 14C increases in A.D. 774-5 and 993-4 as determined from tree rings. Adv Space Res 55:1537-1545

    Google Scholar 

  70. Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409: 387-390

    Google Scholar 

  71. Tunnicliffe V, Fowler CMR (1996) influence of sea-floor spreading on the global hydrothermal vent fauna. Nature 379:531-533

    Google Scholar 

  72. Vita-Finzi C, Howarth RJ, Tapper S, Robinson C (2004) Venusian craters and the origin of coronae. Lunar Planet Sci Conf 35, abs 1564

    Google Scholar 

  73. Wallner A et al (2016) Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe. Nature 532:69-72

    Google Scholar 

  74. Wood MG et al (eds) (2014) Dictionary of untranslatables. Princeton, Princeton Univ Press

    Google Scholar 

  75. Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Nat Acad Sci USA 87: 200-204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Vita-Finzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vita-Finzi, C. (2016). Life. In: A History of the Solar System. Springer, Cham. https://doi.org/10.1007/978-3-319-33850-7_7

Download citation

Publish with us

Policies and ethics