Electrical Fluctuations on the Surfaces of Proteins from Hydrodynamic Data

Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


We calculate the electrical capacitance on the surface of protein molecules from hydrodynamic data of the proteins. Then, we estimate the electrical fluctuations (charge, voltage) through the fluctuation-dissipation theorem which links the electrical capacitance of the system with these fluctuations. From the intrinsic viscosity of the proteins we estimate the polarizability which leads to the knowledge of the field and dipole fluctuations. From the fitting of the capacitance, polarizability and electrical fluctuations as a function of the molecular weight of the proteins we report numerical equations which allow to estimate these physical magnitudes for a given protein knowing the molecular weight. Charge fluctuations are in the fraction of unit charge range, voltage fluctuations are in the three mV digit range, field fluctuations are in the two digit mV/nm (106 V/m) range and the dipole moment fluctuations range from the two to three digit times the dipole moment of water molecule. These surface properties of proteins have not been reported before.


Proteins electrical fluctuations Proteins dipole fluctuations Proteins field fluctuations Proteins voltage fluctuations 


  1. 1.
    Armstrong, J.McD., Myers, D.V., Verpoorte, J.A., Edsall, J.T.: Purification and properties of human erythrocyte carbonic anhydrases. J. Biol. Chem. 241 (21), 5137–5149 (1966)Google Scholar
  2. 2.
    Bull, H.B., Breese, K.: Protein hydration. II. Specific heat of egg albumin. Arch. Biochem. Biophys. 128, 497–502 (1968)CrossRefGoogle Scholar
  3. 3.
    Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry - Part II. W. H. Freeman, New York (1980)Google Scholar
  4. 4.
    Careri, G., Fasella, P., Gratton, E.: CRC Crit. Rev. Biochem. 3, 141 (1975). Ann. Rev. Biophys. Bioengng. 132, 69 (1979)Google Scholar
  5. 5.
    Carrasco, B., de la Torre, J.G.: Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures. Biophys. J. 75, 3044–3057 (1999)CrossRefGoogle Scholar
  6. 6.
    Deutch, J.M., Felderhof, B.U.: Frictional properties of dilute polymer solutions. II. The effect of preaveraging. J. Chem. Phys. 62, 2398–2405 (1975)Google Scholar
  7. 7.
    Edsall, J.T.: In: Rich, A., Davidson, N. (ed.) Structural Chemistry and Molecular Biology, p. 88. Freeman, San Francisco (1968)Google Scholar
  8. 8.
    Fisher, W.R., Taniuchi, H., Anfinsen, C.B.: On the role of heme in the formation of the structure of cytochrome c. J. Biol. Chem. 248, 3188–3195 (1973)Google Scholar
  9. 9.
    Fornés, J.A.: Electrical fluctuations in colloid and ionic solutions. J. Colloid Interface Sci. 186, 90–101 (1997)CrossRefGoogle Scholar
  10. 10.
    Fornés, J.A.: Thermal electrical fluctuations around a charged colloidal cylinder in an electrolyte. Phys. Rev. E 57, 2104–2109 (1998)CrossRefGoogle Scholar
  11. 11.
    Fornés, J.A.: Fluctuation-dissipation theorem and the polarizability of rodlike polyelectrolytes: an electric circuit view. Phys. Rev. E 57, 2110–2114 (1998)CrossRefGoogle Scholar
  12. 12.
    Harding, S.E.: The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structures in dilute solutions. Prog. Biophys. Mol. Biol. 68, 207–262 (1997)Google Scholar
  13. 13.
    Harding, S.E., Dampier, M., Rowe, A.J.: The viscosity increment for a dilute suspension of triaxial ellipsoids in dominant Brownian motion. J. Colloid Interface Sci. 79 (1), 7–13 (1981)CrossRefGoogle Scholar
  14. 14.
    Hubbard, J.B., Douglas, J.F.: Hydrodynamic friction of arbitrarily shaped Brownian particles. Phys. Rev. E 47 (5), R2983–R2986 (1993)CrossRefGoogle Scholar
  15. 15.
    Kirkwood, J.G., Riseman, J.: The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys. 16, 565–573 (1948)CrossRefGoogle Scholar
  16. 16.
    Rai, N., Nöllmann, M., Spotorno, B., Tassara, G., Byron, O.: SOMO(SOlution MOdeler): Differences between X-Ray- and NMR-derived bead models suggest a role for side chain flexibility in protein hydrodynamics. Structure 13, 723–734 (2005)CrossRefGoogle Scholar
  17. 17.
    Schwert, G.W.: The molecular size and shape of the pancreatic proteases. II. Chymotrypsinogen. J. Biol. Chem. 190, 799–806 (1951)Google Scholar
  18. 18.
    Simha, R.: The influence of Brownian movement on the viscosity of solutions. J. Phys. Chem. 44, 25–34 (1940)CrossRefGoogle Scholar
  19. 19.
    Simonson, T., Perahia, D.: Polar fluctuations in proteins: molecular-dynamic studies of cytochrome c in aqueous solution. Faraday Discuss. 103, 71–90 (1996)CrossRefGoogle Scholar
  20. 20.
    Squire, P.G., Himmel, M.E.: Hydrodynamic and protein hydration. Q. Rev. Biophys. 1, 165–177 (1979)Google Scholar
  21. 21.
    Tanford, C.: Protein denaturation. Adv. Protein. Chem. 23, 121–282 (1968)CrossRefGoogle Scholar
  22. 22.
    de la Torre, J.G., Bloomfield, V.A.: Hydrodynamic properties of complex, rigid, biological macromolecules. Theory and applications. Quart. Rev. Biophys. 14, 81–139 (1981)CrossRefGoogle Scholar
  23. 23.
    Weber, G.: Adv. Protein Chem. 29, 1 (1975)CrossRefGoogle Scholar
  24. 24.
    Zhou, H.-X.: Calculation of translational friction and intrinsic viscosity. I. General formulation for arbitrarily shaped particles. Biophys. J. 69, 2286–2297 (1995)Google Scholar
  25. 25.
    Zhou, H.-X.: Calculation of translational friction and intrinsic viscosity. II. Application to Globular Proteins. Biophys. J. 69, 2298–2303 (1995)Google Scholar
  26. 26.
    Zhou, H.-X.: A unified picture of protein hydration: prediction of hydrodynamic properties from known structures. Biophys. Chem. 93, 171–179 (2001)CrossRefGoogle Scholar
  27. 27.
    Zipper, P., Durchschlag, H.: Calculation of hydrodynamic parameters of proteins from crystallographic data using multibody approaches. Prog. Colloid Polym. Sci. 107, 58–71 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Federal University of GoiásGoiâniaBrazil

Personalised recommendations