Skip to main content

Electrical Fluctuations on the Surfaces of Proteins from Hydrodynamic Data

  • Chapter
  • First Online:
Electrical Fluctuations in Polyelectrolytes

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 292 Accesses

Abstract

We calculate the electrical capacitance on the surface of protein molecules from hydrodynamic data of the proteins. Then, we estimate the electrical fluctuations (charge, voltage) through the fluctuation-dissipation theorem which links the electrical capacitance of the system with these fluctuations. From the intrinsic viscosity of the proteins we estimate the polarizability which leads to the knowledge of the field and dipole fluctuations. From the fitting of the capacitance, polarizability and electrical fluctuations as a function of the molecular weight of the proteins we report numerical equations which allow to estimate these physical magnitudes for a given protein knowing the molecular weight. Charge fluctuations are in the fraction of unit charge range, voltage fluctuations are in the three mV digit range, field fluctuations are in the two digit mV/nm (106 V/m) range and the dipole moment fluctuations range from the two to three digit times the dipole moment of water molecule. These surface properties of proteins have not been reported before.

Part reprinted from [José A. Fornés, J. Colloid Interface Sci. 323, 255, (2008)] Copyright (2008), with permission from Elsevier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong, J.McD., Myers, D.V., Verpoorte, J.A., Edsall, J.T.: Purification and properties of human erythrocyte carbonic anhydrases. J. Biol. Chem. 241 (21), 5137–5149 (1966)

    Google Scholar 

  2. Bull, H.B., Breese, K.: Protein hydration. II. Specific heat of egg albumin. Arch. Biochem. Biophys. 128, 497–502 (1968)

    Article  CAS  Google Scholar 

  3. Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry - Part II. W. H. Freeman, New York (1980)

    Google Scholar 

  4. Careri, G., Fasella, P., Gratton, E.: CRC Crit. Rev. Biochem. 3, 141 (1975). Ann. Rev. Biophys. Bioengng. 132, 69 (1979)

    Google Scholar 

  5. Carrasco, B., de la Torre, J.G.: Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures. Biophys. J. 75, 3044–3057 (1999)

    Article  Google Scholar 

  6. Deutch, J.M., Felderhof, B.U.: Frictional properties of dilute polymer solutions. II. The effect of preaveraging. J. Chem. Phys. 62, 2398–2405 (1975)

    CAS  Google Scholar 

  7. Edsall, J.T.: In: Rich, A., Davidson, N. (ed.) Structural Chemistry and Molecular Biology, p. 88. Freeman, San Francisco (1968)

    Google Scholar 

  8. Fisher, W.R., Taniuchi, H., Anfinsen, C.B.: On the role of heme in the formation of the structure of cytochrome c. J. Biol. Chem. 248, 3188–3195 (1973)

    CAS  Google Scholar 

  9. Fornés, J.A.: Electrical fluctuations in colloid and ionic solutions. J. Colloid Interface Sci. 186, 90–101 (1997)

    Article  Google Scholar 

  10. Fornés, J.A.: Thermal electrical fluctuations around a charged colloidal cylinder in an electrolyte. Phys. Rev. E 57, 2104–2109 (1998)

    Article  Google Scholar 

  11. Fornés, J.A.: Fluctuation-dissipation theorem and the polarizability of rodlike polyelectrolytes: an electric circuit view. Phys. Rev. E 57, 2110–2114 (1998)

    Article  Google Scholar 

  12. Harding, S.E.: The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structures in dilute solutions. Prog. Biophys. Mol. Biol. 68, 207–262 (1997)

    Google Scholar 

  13. Harding, S.E., Dampier, M., Rowe, A.J.: The viscosity increment for a dilute suspension of triaxial ellipsoids in dominant Brownian motion. J. Colloid Interface Sci. 79 (1), 7–13 (1981)

    Article  Google Scholar 

  14. Hubbard, J.B., Douglas, J.F.: Hydrodynamic friction of arbitrarily shaped Brownian particles. Phys. Rev. E 47 (5), R2983–R2986 (1993)

    Article  CAS  Google Scholar 

  15. Kirkwood, J.G., Riseman, J.: The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys. 16, 565–573 (1948)

    Article  CAS  Google Scholar 

  16. Rai, N., Nöllmann, M., Spotorno, B., Tassara, G., Byron, O.: SOMO(SOlution MOdeler): Differences between X-Ray- and NMR-derived bead models suggest a role for side chain flexibility in protein hydrodynamics. Structure 13, 723–734 (2005)

    Article  CAS  Google Scholar 

  17. Schwert, G.W.: The molecular size and shape of the pancreatic proteases. II. Chymotrypsinogen. J. Biol. Chem. 190, 799–806 (1951)

    CAS  Google Scholar 

  18. Simha, R.: The influence of Brownian movement on the viscosity of solutions. J. Phys. Chem. 44, 25–34 (1940)

    Article  CAS  Google Scholar 

  19. Simonson, T., Perahia, D.: Polar fluctuations in proteins: molecular-dynamic studies of cytochrome c in aqueous solution. Faraday Discuss. 103, 71–90 (1996)

    Article  CAS  Google Scholar 

  20. Squire, P.G., Himmel, M.E.: Hydrodynamic and protein hydration. Q. Rev. Biophys. 1, 165–177 (1979)

    Google Scholar 

  21. Tanford, C.: Protein denaturation. Adv. Protein. Chem. 23, 121–282 (1968)

    Article  CAS  Google Scholar 

  22. de la Torre, J.G., Bloomfield, V.A.: Hydrodynamic properties of complex, rigid, biological macromolecules. Theory and applications. Quart. Rev. Biophys. 14, 81–139 (1981)

    Article  Google Scholar 

  23. Weber, G.: Adv. Protein Chem. 29, 1 (1975)

    Article  CAS  Google Scholar 

  24. Zhou, H.-X.: Calculation of translational friction and intrinsic viscosity. I. General formulation for arbitrarily shaped particles. Biophys. J. 69, 2286–2297 (1995)

    CAS  Google Scholar 

  25. Zhou, H.-X.: Calculation of translational friction and intrinsic viscosity. II. Application to Globular Proteins. Biophys. J. 69, 2298–2303 (1995)

    CAS  Google Scholar 

  26. Zhou, H.-X.: A unified picture of protein hydration: prediction of hydrodynamic properties from known structures. Biophys. Chem. 93, 171–179 (2001)

    Article  CAS  Google Scholar 

  27. Zipper, P., Durchschlag, H.: Calculation of hydrodynamic parameters of proteins from crystallographic data using multibody approaches. Prog. Colloid Polym. Sci. 107, 58–71 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fornés, J.A. (2017). Electrical Fluctuations on the Surfaces of Proteins from Hydrodynamic Data. In: Electrical Fluctuations in Polyelectrolytes . SpringerBriefs in Molecular Science. Springer, Cham. https://doi.org/10.1007/978-3-319-33840-8_7

Download citation

Publish with us

Policies and ethics