Skip to main content

The Polarizability of Rod-Like Polyelectrolytes: An Electric Circuit View

  • Chapter
  • First Online:
Electrical Fluctuations in Polyelectrolytes

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 303 Accesses

Abstract

In this chapter we use the fluctuation-dissipation theorem (FDT) to estimate the polarizability or dielectric constant as a function of the frequency for low electric field of a polyelectrolyte immersed in an ionic solution; the idea is to consider each charged group within the polyelectrolyte framework and its neighbourhood as a resistor and a capacitor in series. We obtained for the longitudinal polarizability α  ∥ (0) = C δ 2, where C is the total polyelectrolyte-ionic capacitance and δ the average displacement of the ‘bound’ ions under the influence of the thermal fluctuating field. Any of the theories which predict α  ∥ (0), δ, and the relaxation time τ, can be used to estimate R and C, on the other hand, R, C and δ can be obtained independently by modeling the system. Using Mandel’s results we obtain for the total polyelectrolyte-ionic longitudinal capacitance C = n 2 C 0 where n is the number of condensed but mobile counterions of valence z, and C 0 is the elementary capacitance, \(C_{0} = (ze_{0})^{2}/kT\). We obtain results that are consistent with the experimental data of Takashima for the dielectric dispersion of DNA solutions.

Part of this chapter was reprinted with permission from [José A. Fornés, Phys. Rev. E 57,2, 2110, (1998)] Copyright (1998) by the American Physical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A class is defined as a set of chemical groups with the same charge.

  2. 2.

    Equation 3.15 was already derived by Oosawa [13] following an averaging procedure.

References

  1. Allgen, L.G.: A dielectric study of nucleohistone from calf thymus. Acta Physiol. Scand. Suppl. 22 (Suppl. 76), 1–140 (1950)

    Google Scholar 

  2. Hasted, J.B.: Aqueous Dielectrics, p. 11. Chapman and Hall, London (1973)

    Google Scholar 

  3. Jerrard, H.G., Simmons, B.A.W.: Dielectric studies on deoxyribonucleic acid. Nature 184, 1715 (1959)

    Article  CAS  Google Scholar 

  4. Jungner, G., Jungner, I., Allgen, L.G.: Molecular weight determination on thymonuclelc acid compounds by dielectric measurements. Nature 163, 849 (1949)

    Article  CAS  Google Scholar 

  5. Klug, D., Kranbuehl, D., Vanghau, W.: Molecular correlation functions and dielectric relaxation. J. Chem. Phys. 50, 3904 (1969)

    Article  CAS  Google Scholar 

  6. Mandel, M.: The electric polarization of rod-like, charged macromolecules. Mol. Phys. 4, 489 (1961)

    Article  CAS  Google Scholar 

  7. Mandel, M., Jenard, A.: Dielectric behaviour of aqueous polyelectrolyte solutions. Part 1. Trans. Faraday Soc. 59, 2158 (1963)

    Google Scholar 

  8. Mandel, M., Jenard, A.: Dielectric behaviour of aqueous polyelectrolyte solutions. Part 2. Trans. Faraday Soc. 59, 2170 (1963)

    Google Scholar 

  9. Manning, G.S.: A condensed counterion theory for polarization of polyelectrolyte solutions in high fields. J. Chem. Phys. 99, 477 (1993)

    Article  CAS  Google Scholar 

  10. Mohanty, U., Zhao, Y.: Polarization of counterions in polyelectrolytes. Biopolymers 38, 377 (1996)

    Article  CAS  Google Scholar 

  11. Oncley, J.L.: The investigation of proteins by dielectric measurements. Chem. Rev. 30, 433 (1942)

    Article  CAS  Google Scholar 

  12. Oosawa, F.: Counterion fluctuation and dielectric dispersion in linear polyelectrolytes. Biopolymers 9, 677 (1970)

    Article  CAS  Google Scholar 

  13. Oosawa, F.: Polyelectrolytes, Chap. 5 Marcel Dekker, New York (1971)

    Google Scholar 

  14. O’Konski, C.T.: Electric properties of macromolecules. V. Theory of ionic polarization in polyelectrolytes. J. Phys. Chem. 64, 605 (1960)

    Google Scholar 

  15. Schwarz, G.: Zur theorie der leitfahigkeitsanisotropie von polyelektrolyten in losung,. Z. Phys. 145, 563 (1956)

    Article  CAS  Google Scholar 

  16. Schwarz, G.: Dielectric relaxation of biopolymers in solution. Z. Phys. Chem. 19, 286 (1959)

    Article  CAS  Google Scholar 

  17. Takashima, S.: Dielectric dispersion of DNA. J. Mol. Biol. 7, 455 (1963)

    Article  CAS  Google Scholar 

  18. Takashima, S.: Dielectric dispersion of deoxyribonucleic acid. J. Phys. Chem. 70, 1372 (1966)

    Article  CAS  Google Scholar 

  19. Takashima, S.: Effect of ions on the dielectric relaxation of DNA. Biopolymers 5, 899 (1967)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fornés, J.A. (2017). The Polarizability of Rod-Like Polyelectrolytes: An Electric Circuit View. In: Electrical Fluctuations in Polyelectrolytes . SpringerBriefs in Molecular Science. Springer, Cham. https://doi.org/10.1007/978-3-319-33840-8_5

Download citation

Publish with us

Policies and ethics