Skip to main content

Dielectric Relaxation Around a Charged Colloidal Cylinder in an Electrolyte

  • Chapter
  • First Online:
Electrical Fluctuations in Polyelectrolytes

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 295 Accesses

Abstract

The polarizability and the corresponding dielectric relaxation of the Debye–Hückel (DH) atmosphere surrounding a charged rod-like polyelectrolyte immersed in an ionic solution of a symmetrical electrolyte is determined following the method developed in the former chapter.

Several formulas are given to estimate the DH atmosphere parameters, namely: the polarizability at zero frequency, α(0), the relaxation time, τ, the cloud capacitance, C,the average displacement of the ionic cloud, δ, the square root dipole moment quadratic fluctuation, \(<p^{2}> ^{1/2}\), and the thermal fluctuating field, \(<E^{2}> ^{1/2}.\) The Poisson–Boltzmann equation is solved numerically in order to apply the theory to a highly charged polyelectrolyte as DNA in solution, although also are given formulas valid for the DH approximation. It is predicted a dispersion in the polarizability and correspondingly in the dielectric constant of these solutions in the microwave region. For instance, considering the DNA length of 1000 Å, with its reduced linear charge density ξ 0 = 4. 25, and ionization factor γ = 0. 5, immersed in a NaCl solution (40 mM) we predict a polarizability of the DH atmosphere at zero frequency \(\alpha (0) = 1 \times 10^{-33}\ \mathrm{Fm}^{2}\) ( ≃ 6. 1 × 106 times greater than the mean value of the polarizability of water) and the corresponding fluctuating dipole moment \(p = 2.1 \times 10^{-27}\) cm ( ≃ 600 times greater than the permanent dipole moment of water molecule). The relaxation time and the average displacement of the ionic cloud is τ = 1. 6 ns and δ = 14 Å, respectively. This displacement is produced by the thermal fluctuating field, which, in this case, at room temperature is \(<E^{2}> ^{1/2} = 2 \times 10^{6}\) V/m.

Reprinted from [José A. Fornés, J. Colloid Interface Sci. 222, 97, (2000)] Copyright (2000), with permission from Elsevier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bockris, J.O’M., Reddy, A.K.N.: Modern Electrochemistry, vol. 1, p. 200. Plenum Press, New York (1977)

    Google Scholar 

  2. Fischer, A., Netz, R.R.: Low-frequency collective exchange mode in the dielectric spectrum of salt-free dilute polyelectrolyte solutions. Eur. Phys. J. E 36, 117 (2013)

    Article  Google Scholar 

  3. Fornés, J.A.: Electrical fluctuations in colloidal and ionic solutions. J. Colloid Interface Sci. 186, 90 (1997)

    Article  Google Scholar 

  4. Fornés, J.A.: Thermal electrical fluctuations around a charged colloidal cylinder in an electrolyte. Phys. Rev. E 57, 2104 (1998)

    Article  Google Scholar 

  5. Hasted, J.B.: Aqueous Dielectrics, p. 11. Chapman and Hall, London (1973)

    Google Scholar 

  6. Hill, N.E., Vaughan, W.E., Price, A.H., Davies, M.: “Dielectric Properties and Molecular Behaviour.” Van Nostrand Reinhold Company, London (1969)

    Google Scholar 

  7. Katsumoto, Y., Omori, S., Yamamoto, D., Yasuda, A.: Dielectric dispersion of short single-stranded DNA in aqueous solutions with and without added salt. Phys. Rev. E 75, 011911 (2007)

    Article  Google Scholar 

  8. Klösgen, B., Reichle, C., Kohlsmann, S., Kramer, K.D.: Dielectric spectroscopy as a sensor of membrane headgroup mobility and hydration. Biophys. J. 71, 3251 (1996)

    Article  Google Scholar 

  9. Ohshima, H.: Henry’s function for electrophoresis of a cylindrical colloidal particle. J. Colloid Interface Sci. 180, 299 (1996)

    Article  CAS  Google Scholar 

  10. Ohshima, H.: Dynamic electrophoretic mobility of a cylindrical colloidal particle. J. Colloid Interface Sci. 185, 131 (1997)

    Article  CAS  Google Scholar 

  11. Ohshima, H.: Electrophoretic mobility of cylindrical soft particles. Colloid Polym. Sci. 275, 480 (1997)

    Article  CAS  Google Scholar 

  12. Oosawa, F.: Counterion fluctuation and dielectric dispersion in linear polyelectrolytes. Biopolymers 9, 677 (1970)

    Article  CAS  Google Scholar 

  13. Van Holde, K.E.: Physical Biochemistry, p. 81. Prentice-Hall, Englewood Cliffs (1971)

    Google Scholar 

  14. Washizu, H., Kikuchi, K.: Simulation of electric polarizability of polyelectrolytes. J. Phys. Chem. B 106, 11329 (2002)

    Article  CAS  Google Scholar 

  15. Washizu, H., Kikuchi, K.: Electric polarizability of DNA in aqueous salt solution. J. Phys. Chem. B 110, 2855 (2006)

    Article  CAS  Google Scholar 

  16. Yoshida, M., Kikuchi, K.: Metropolis Monte Carlo Brownian dynamics simulation of the ion atmosphere polarization around a rodlike polyion. J. Phys. Chem. 98, 10303 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fornés, J.A. (2017). Dielectric Relaxation Around a Charged Colloidal Cylinder in an Electrolyte. In: Electrical Fluctuations in Polyelectrolytes . SpringerBriefs in Molecular Science. Springer, Cham. https://doi.org/10.1007/978-3-319-33840-8_4

Download citation

Publish with us

Policies and ethics