Dielectric Relaxation Around a Charged Colloidal Cylinder in an Electrolyte

Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


The polarizability and the corresponding dielectric relaxation of the Debye–Hückel (DH) atmosphere surrounding a charged rod-like polyelectrolyte immersed in an ionic solution of a symmetrical electrolyte is determined following the method developed in the former chapter.

Several formulas are given to estimate the DH atmosphere parameters, namely: the polarizability at zero frequency, α(0), the relaxation time, τ, the cloud capacitance, C,the average displacement of the ionic cloud, δ, the square root dipole moment quadratic fluctuation, \(<p^{2}> ^{1/2}\), and the thermal fluctuating field, \(<E^{2}> ^{1/2}.\) The Poisson–Boltzmann equation is solved numerically in order to apply the theory to a highly charged polyelectrolyte as DNA in solution, although also are given formulas valid for the DH approximation. It is predicted a dispersion in the polarizability and correspondingly in the dielectric constant of these solutions in the microwave region. For instance, considering the DNA length of 1000 Å, with its reduced linear charge density ξ0 = 4. 25, and ionization factor γ = 0. 5, immersed in a NaCl solution (40 mM) we predict a polarizability of the DH atmosphere at zero frequency \(\alpha (0) = 1 \times 10^{-33}\ \mathrm{Fm}^{2}\) ( ≃ 6. 1 × 106 times greater than the mean value of the polarizability of water) and the corresponding fluctuating dipole moment \(p = 2.1 \times 10^{-27}\) cm ( ≃ 600 times greater than the permanent dipole moment of water molecule). The relaxation time and the average displacement of the ionic cloud is τ = 1. 6 ns and δ = 14 Å, respectively. This displacement is produced by the thermal fluctuating field, which, in this case, at room temperature is \(<E^{2}> ^{1/2} = 2 \times 10^{6}\) V/m.


Ionic dielectric relaxation Ionic polarization Cylindrical polyelectrolytes 


  1. 1.
    Bockris, J.O’M., Reddy, A.K.N.: Modern Electrochemistry, vol. 1, p. 200. Plenum Press, New York (1977)Google Scholar
  2. 2.
    Fischer, A., Netz, R.R.: Low-frequency collective exchange mode in the dielectric spectrum of salt-free dilute polyelectrolyte solutions. Eur. Phys. J. E 36, 117 (2013)CrossRefGoogle Scholar
  3. 3.
    Fornés, J.A.: Electrical fluctuations in colloidal and ionic solutions. J. Colloid Interface Sci. 186, 90 (1997)CrossRefGoogle Scholar
  4. 4.
    Fornés, J.A.: Thermal electrical fluctuations around a charged colloidal cylinder in an electrolyte. Phys. Rev. E 57, 2104 (1998)CrossRefGoogle Scholar
  5. 5.
    Hasted, J.B.: Aqueous Dielectrics, p. 11. Chapman and Hall, London (1973)Google Scholar
  6. 6.
    Hill, N.E., Vaughan, W.E., Price, A.H., Davies, M.: “Dielectric Properties and Molecular Behaviour.” Van Nostrand Reinhold Company, London (1969)Google Scholar
  7. 7.
    Katsumoto, Y., Omori, S., Yamamoto, D., Yasuda, A.: Dielectric dispersion of short single-stranded DNA in aqueous solutions with and without added salt. Phys. Rev. E 75, 011911 (2007)CrossRefGoogle Scholar
  8. 8.
    Klösgen, B., Reichle, C., Kohlsmann, S., Kramer, K.D.: Dielectric spectroscopy as a sensor of membrane headgroup mobility and hydration. Biophys. J. 71, 3251 (1996)CrossRefGoogle Scholar
  9. 9.
    Ohshima, H.: Henry’s function for electrophoresis of a cylindrical colloidal particle. J. Colloid Interface Sci. 180, 299 (1996)CrossRefGoogle Scholar
  10. 10.
    Ohshima, H.: Dynamic electrophoretic mobility of a cylindrical colloidal particle. J. Colloid Interface Sci. 185, 131 (1997)CrossRefGoogle Scholar
  11. 11.
    Ohshima, H.: Electrophoretic mobility of cylindrical soft particles. Colloid Polym. Sci. 275, 480 (1997)CrossRefGoogle Scholar
  12. 12.
    Oosawa, F.: Counterion fluctuation and dielectric dispersion in linear polyelectrolytes. Biopolymers 9, 677 (1970)CrossRefGoogle Scholar
  13. 13.
    Van Holde, K.E.: Physical Biochemistry, p. 81. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  14. 14.
    Washizu, H., Kikuchi, K.: Simulation of electric polarizability of polyelectrolytes. J. Phys. Chem. B 106, 11329 (2002)CrossRefGoogle Scholar
  15. 15.
    Washizu, H., Kikuchi, K.: Electric polarizability of DNA in aqueous salt solution. J. Phys. Chem. B 110, 2855 (2006)CrossRefGoogle Scholar
  16. 16.
    Yoshida, M., Kikuchi, K.: Metropolis Monte Carlo Brownian dynamics simulation of the ion atmosphere polarization around a rodlike polyion. J. Phys. Chem. 98, 10303 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Federal University of GoiásGoiâniaBrazil

Personalised recommendations