Advertisement

The Electrical Capacitance, the Link to the Electrical Fluctuations

Chapter
  • 277 Downloads
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

In this chapter, we develop a method in order to estimate the electrical fluctuations in small systems. The method consists in knowing the electrical capacitance that emerges as a consequence of the processes or the system’s interfaces. We use results given by the fluctuation-dissipation theorem in the classical limit. Estimating the electrical capacitance is important because it is the link to the knowledge of the fluctuation of several physical quantities, voltage and field fluctuations, dipole moment, pH, and charge, and also to knowledge of the polarizability and the dielectric dispersion of colloidal and polyelectrolytes systems.

Keywords

Charge fluctuation capacitance Small systems Electrical fluctuations 

References

  1. 1.
    Astumian, R.D., Bier, M.: Fluctuation driven ratchets - Molecular motors. Phys. Rev. Lett. 72, 1766–1769 (1994)CrossRefGoogle Scholar
  2. 2.
    Callen, H.B., Welton, T.A.: Irreversibility and generalized noise. Phys. Rev. 83, 34 (1951)CrossRefGoogle Scholar
  3. 3.
    Chandler, D., Andersen, H.: Mode expansion in equilibrium statistical mechanics. II. A rapidly convergent theory of ionic solutions. J. Chem. Phys. 54, 26–33 (1971)Google Scholar
  4. 4.
    Fornés, J.A.: Electrical fluctuations in colloid and ionic solutions. J Colloid Interface Sci. 186, 90–101 (1997)CrossRefGoogle Scholar
  5. 5.
    Fornés, J.A.: Fluctuation-dissipation theorem and the polarizability of rodlike polyelectrolytes: an electric circuit view. Phys. Rev. E 57, 2110–2114 (1998)CrossRefGoogle Scholar
  6. 6.
    Fornés, J.A.: Thermal electrical fluctuations around a charged colloidal cylinder in an electrolyte. Phys. Rev. E 57, 2104–2109 (1998)CrossRefGoogle Scholar
  7. 7.
    Fornés, J.A.: The electrical capacitance of small systems. J. Colloid Interface Sci. 226, 172–179 (2000)CrossRefGoogle Scholar
  8. 8.
    Fornés, J.A.: Dielectric relaxation around a charged colloidal cylinder in an electrolyte. J. Colloid Interface Sci. 222, 97–102 (2000)CrossRefGoogle Scholar
  9. 9.
    Fornés, J.A.: Hydrodynamic interactions introduce differences in the behaviour of a ratchet dimer Brownian motor. J. Biomater. Nanobiotechnol. 6, 81–90 (2015)CrossRefGoogle Scholar
  10. 10.
    Fornés, J.A., Ito, A.S., Curi, R., Procopio, J.: pH fluctuations in unilamellar vesicles. Phys. Chem. Chem. Phys. 1 (22), 5133–5138 (1999)CrossRefGoogle Scholar
  11. 11.
    Kirkwood, J.G., Shumaker, J.B.: The influence of dipole moment fluctuations on the dielectric increment of proteins in solution. Proc. Natl. Acad. Sci. U.S.A. 38, 855–862 (1952)CrossRefGoogle Scholar
  12. 12.
    Landau, L.D., Lifshitz, E.M.: Statistical Physics, p. 387. Pergamon Press, Oxford (1988)Google Scholar
  13. 13.
    Oosawa, F.: Counterion fluctuation and dielectric dispersion in linear polyelectrolytes. Biopolymers 9, 677 (1970)CrossRefGoogle Scholar
  14. 14.
    Oosawa, F.: Polyelectrolytes, Chap. 5 Marcel Dekker, New York (1971)Google Scholar
  15. 15.
    Oosawa, F.: Field fluctuation in ionic solutions and its biological significance. J. Theor. Biol. 39, 373–386 (1973)CrossRefGoogle Scholar
  16. 16.
    Procopio, J., Fornés, J.A.: Fluctuation-dissipation theorem imposes high-voltage fluctuations in biological ionic channels. Phys. Rev. E 51, 829–831 (1995)CrossRefGoogle Scholar
  17. 17.
    Procopio, J., Fornés, J.A.: Fluctuations of the proton-electromotive force across the inner mitochondrial membrane. Phys. Rev. E 55, 6285–6288 (1997)CrossRefGoogle Scholar
  18. 18.
    Schurr, J.M.: Theory of quasi elastic light scattering from chemically reactive ionic solutions. J. Phys. Chem. 73, 2820–2828 (1969)CrossRefGoogle Scholar
  19. 19.
    Schurr, J.M.: Dielectric dispersion of linear polyelectrolytes. Biopolymers 10, 1371–1375 (1971)CrossRefGoogle Scholar
  20. 20.
    Schwarz, G.: A theory of the low-frequency dielectric dispersion of colloid particles in electrolyte solution. J. Phys. Chem. 66, 2636–2642 (1962)CrossRefGoogle Scholar
  21. 21.
    Weaver, J.C., Astumian, R.D.: The response of living cells to very weak electric-fields - The thermal noise limit. Science 247, 459–462 (1990)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Federal University of GoiásGoiâniaBrazil

Personalised recommendations