Skip to main content

Ensemble Classifiers Construction Using Diversity Measures and Random Subspace Algorithm Combination: Application to Glaucoma Diagnosis

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 651))

Abstract

Glaucoma is a group of eye diseases caused due to excessively high intraocular pressure within the eye. Ensemble classifier construction has attracted increasing interest in the field of pattern recognition and machine learning. Diversity among the classifiers is important factor for each ensemble to be successful. The most widely generation techniques are focused on incorporating the concept of diversity by using different features or training subsets. a classifier selection process becomes an important issue of multiple classifier system by choosing the optimal subset of members that maximizes the performance. The main goal of this study is to develop novel automated glaucoma diagnosis system which analyze and classify retinal images using a novel classification approach based on feature selection and static classifier selection schemes. Experimental results based on RIM-ONE dataset are very encouraging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.glaucoma.org/glaucoma/diagnostic-tests.php.

References

  1. Lim, T., Chattopadhyay, S., Acharya, U.R.: A survey and comparative study on the instruments for glaucoma detection. Med. Eng. Phys. 34, 129–139 (2012)

    Article  Google Scholar 

  2. Quigley, H.A., Broman, A.T.: The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90(3), 262–267 (2006)

    Article  Google Scholar 

  3. Lin, S.C., Singh, K., Jampel, H.D., Hodapp, E.A., Smith, S.D., Francis, B.A., Minckler, D.S.: Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology. Ophthalmology 114(10), 1937–1949 (2007)

    Article  Google Scholar 

  4. Srivastava, A., Raj, A., Bhateja, V.: Combination of wavelet transform and morphological filtering for enhancement of magnetic resonance images. In: Digital Information Processing and Communications, pp. 460–474. Springer, Heidelberg (2011)

    Google Scholar 

  5. Gupta, A., Ganguly, A., Bhateja, V.: A noise robust edge detector for color images using hilbert transform. In: 2013 IEEE 3rd International Advance Computing Conference (IACC), pp. 1207–1212. IEEE (2013)

    Google Scholar 

  6. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  7. Sharma, N., Ray, A.K., Sharma, S., Shukla, K.K., Pradhan, S., Aggarwal, L.M.: Segmentation and classification of medical images using texture-primitive features: Application of BAM-type artificial neural network. J. Med. Phys./Assoc. Med. Physicists India 33(3), 119 (2008)

    Google Scholar 

  8. Oza, N.C., Tumer, K.: Classifier ensembles: Select real-world applications. Inf. Fusion 9(1), 4–20 (2008)

    Article  Google Scholar 

  9. Rokach, L.: Taxonomy for characterizing ensemble methods in classification tasks: a review and annotated bibliography. Comput. Stat. Data Anal. 53(12), 4046–4072 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kuncheva, L.: Combining pattern classifiers. Wiley, New York (2005)

    MATH  Google Scholar 

  11. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Article  Google Scholar 

  12. Ruta, D., Gabrys, B.: Classifier selection for majority voting. Inf. Fusion 6(1), 63–81 (2005)

    Article  MATH  Google Scholar 

  13. Hassanien, A.E., Moftah, H.M., Azar, A.T., Shoman, M.: MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier. Appl. Soft Comput. 14, 62–71 (2014)

    Google Scholar 

  14. Hassanien, A.E.: Classification and feature selection of breast cancer data based on decision tree algorithm. Int. J. Stud. Inform. Control J. SI 12(1), 33–39 (2003)

    Google Scholar 

  15. Breiman, L.: Bagging predictors. Mach. Learn. 26(2), 123–140 (1996)

    MATH  Google Scholar 

  16. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Machine Learning: Proceedings of the Thirteenth International Conference, pp. 148–156 (1996)

    Google Scholar 

  17. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  18. De Paula Canuto, A.M.: Combining neural networks and fuzzy logic for applications in character recognition. Doctoral dissertation, University of Kent at Canterbury (2001)

    Google Scholar 

  19. Modi, P.J., Kim, P.W.T.: Classification of examples by multiple agents with private features. In: IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 223–229. IEEE (2005)

    Google Scholar 

  20. Ko, A.H.R., Sabourin, R.: Single Classifier-based Multiple Classification Scheme for weak classifiers: an experimental comparison. Expert Syst. Appl. 40(9), 3606–3622 (2013)

    Article  Google Scholar 

  21. Zouari, H., Heutte, L., Lecourtier, Y.: Controlling the diversity in classifier ensembles through a measure of agreement. Pattern Recogn. 38(11), 2195–2199 (2005)

    Article  Google Scholar 

  22. Maclin, R., Shavlik, J.W.: Combining the predictions of multiple classifiers: using competitive learning to initialize neural networks. IJCAI 524–531 (1995)

    Google Scholar 

  23. Yamaguchi, T., Mackin, K.J., Nunohiro, E., Park, J.G., Hara, K., Matsushita, K., Yamasaki, K.: Artificial neural network ensemble-based land-cover classifiers using MODIS data. Artif. Life Robot. 13(2), 570–574 (2009)

    Article  Google Scholar 

  24. Aksela, M.: Comparison of classifier selection methods for improving committee performance. In: Multiple Classifier Systems, pp. 84–93. Springer, Heidelberg (2003)

    Google Scholar 

  25. Valentini, G.: An experimental bias-variance analysis of SVM ensembles based on resampling techniques. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 35(6), 1252–1271 (2005)

    Article  Google Scholar 

  26. Santana, A., Soares, R.G., Canuto, A.M., de Souto, M.C.: A dynamic classifier selection method to build ensembles using accuracy and diversity. In: Ninth Brazilian Symposium on Neural Networks, 2006. SBRN’06, pp. 36–41. IEEE (2006)

    Google Scholar 

  27. Sharkey, A., Sharkey, N.: Diversity, selection, and ensembles of artificial neural nets. Neural Netw. Appl. (NEURAP’97) 205–212 (1997)

    Google Scholar 

  28. Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: A new ensemble diversity measure applied to thinning ensembles. In: Multiple Classifier Systems, pp. 306–316. Springer, Heidelberg (2003)

    Google Scholar 

  29. Giacinto, G., Roli, F.: An approach to the automatic design of multiple classifier systems. Pattern Recogn. Lett. 22(1), 25–33 (2001)

    Article  MATH  Google Scholar 

  30. Lazarevic, A., Obradovic, Z.: Effective pruning of neural network classifier ensembles. In: International Joint Conference on Neural Networks, 2001. Proceedings. IJCNN’01, vol. 2, pp. 796–801. IEEE (2001)

    Google Scholar 

  31. Marginenatu, D., Dietterich, T.: Prununig adaptive boosting. In: Proceedings of the 14th International Conference on Machine Learning, pp. 378–387 (1997)

    Google Scholar 

  32. Azween, A., Kausar, N., Dey, N.: Ensemble clustering algorithm with supervised classification of clinical data for early diagnosis of coronary artery disease. J. Med. Imaging Health Inform. (2014)

    Google Scholar 

  33. Mitchell, T.: Machine Learning. McGraw-hill (1997)

    Google Scholar 

  34. Fumero, F., Alayón, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: RIM-ONE: an open retinal image database for optic nerve evaluation. In: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6. IEEE (2011)

    Google Scholar 

  35. Žunić, D., Žunić, J.: Shape ellipticity from Hu moment invariants. Appl. Math. Comput. 226, 406–414 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Zhang, L., Xiang, F., Pu, J., Zhang, Z.: Application of improved HU moments in object recognition. In: 2012 IEEE International Conference on Automation and Logistics (ICAL), pp. 554–558. IEEE (2012)

    Google Scholar 

  37. Huang, Z., Leng, J.: Analysis of Hu’s moment invariants on image scaling and rotation. In: 2010 2nd International Conference on Computer Engineering and Technology (ICCET), vol. 7, pp. V7–476. IEEE (2010)

    Google Scholar 

  38. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  39. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  40. Samanta, S., Ahmed, S.S., Salem, M.A.M.M., Nath, S.S., Dey, N., Chowdhury, S.S.: Haralick features based automated glaucoma classification using back propagation neural network. In: Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014, pp. 351–358 (2015)

    Google Scholar 

  41. Yuan, F.: A double mapping framework for extraction of shape-invariant features based on multi-scale partitions with AdaBoost for video smoke detection. Pattern Recogn. 45(12), 4326–4336 (2012)

    Article  Google Scholar 

  42. Zhang, B., Pham, T.D.: Phenotype recognition with combined features and random subspace classifier ensemble. BMC Bioinform. 12(1), 128 (2011)

    Article  Google Scholar 

  43. Armano, G., Chira, C., Hatami, N.: A new gene selection method based on random subspace ensemble for microarray cancer classification. In: Pattern Recognition in Bioinformatics, pp. 191–201. Springer, Heidelberg (2011)

    Google Scholar 

  44. Chawla, N.V., Bowyer, K.W.: Random subspaces and subsampling for 2-d face recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pp. 582–589. IEEE (2005

    Google Scholar 

  45. Kapp, M.N., Sabourin, R., Maupin, P.: An empirical study on diversity measures and margin theory for ensembles of classifiers. In: 2007 10th International Conference on Information Fusion, pp. 1–8. IEEE (2007)

    Google Scholar 

  46. Partridge, D., Krzanowski, W.: Distinct failure diversity in multiversion software. Res. Rep. 348, 24 (1997)

    Google Scholar 

  47. Lin, W.Y., Hu, Y.H., Tsai, C.F.: Machine learning in financial crisis prediction: a survey. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 42(4), 421–436 (2012)

    Article  Google Scholar 

  48. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  49. Dey, N., Roy, A.B., Pal, M., Das, A.: FCM based blood vessel segmentation method for retinal images (2012). arXiv:1209.1181

  50. Mookiah, M.R.K., Acharya, U.R., Lim, C.M., Petznick, A., Suri, J.S.: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl.-Based Syst. 33, 73–82 (2012)

    Article  Google Scholar 

  51. Noronha, K.P., Acharya, U.R., Nayak, K.P., Martis, R.J., Bhandary, S.V.: Automated classification of glaucoma stages using higher order cumulant features. Biomed. Signal Process. Control 10, 174–183 (2014)

    Article  Google Scholar 

  52. Nyúl, L.G.: Retinal image analysis for automated glaucoma risk evaluation. In: Sixth International Symposium on Multispectral Image Processing and Pattern Recognition, pp. 74971C–74971C. International Society for Optics and Photonics (2009)

    Google Scholar 

  53. Krishn, A., et al.: Medical image fusion using combination of PCA and wavelet analysis. In: Proceedings of 3rd (IEEE) International Conference on Advances in Computing, Communications and Informatics, pp. 986–991 (2014)

    Google Scholar 

  54. Himanshi, et al.: An improved medical image fusion approach using PCA and complex wavelets. In: Proceedings of (IEEE) International Conference on Medical Imaging, m-Health and Emerging Communication Systems, pp. 442–447 (2014)

    Google Scholar 

  55. Acharya, U.R., Dua, S., Du, X., Vinitha Sree, S., Chua, C.K.: Automated diagnosis of glaucoma using texture and higher order spectra features. IEEE Trans. Inf. Technol. Biomed. 15(3), 449–455 (2011)

    Article  Google Scholar 

  56. Nayak, J., Acharya, R., Bhat, P.S., Shetty, N., Lim, T.C.: Automated diagnosis of glaucoma using digital fundus images. J. Med. Syst. 33(5), 337–346 (2009)

    Article  Google Scholar 

  57. Nagarajan, R., Balachandran, C., Gunaratnam, D., Klistorner, A., Graham, S.: Neural network model for early detection of glaucoma using multi-focal visual evoked potential (M-Vep). Invest. Ophthalmol. Vis. Sci. 43(13), 3902–3902 (2002)

    Google Scholar 

  58. Kolář, R., Jan, J.: Detection of glaucomatous eye via color fundus images using fractal dimensions. Radioengineering 17(3), 109–114 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soraya Cheriguene or Nabiha Azizi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheriguene, S., Azizi, N., Dey, N. (2016). Ensemble Classifiers Construction Using Diversity Measures and Random Subspace Algorithm Combination: Application to Glaucoma Diagnosis. In: Dey, N., Bhateja, V., Hassanien, A. (eds) Medical Imaging in Clinical Applications. Studies in Computational Intelligence, vol 651. Springer, Cham. https://doi.org/10.1007/978-3-319-33793-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33793-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33791-3

  • Online ISBN: 978-3-319-33793-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics