Skip to main content

Image Quality Assessment: A Case Study on Ultrasound Images of Supraspinatus Tendon

  • Chapter
  • First Online:
Medical Imaging in Clinical Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 651))

  • 1090 Accesses

Abstract

With the advancement of technologies on visual contents and the rate at which data is being captured, viewed, stored, and shared, the importance of assessment of quality of the contents has major importance. Image quality assessment has remained a topic of research over the last several decades for optical as well as medical images. User oriented image quality assessment is playing a key role in the assessment of visual contents. Studies are conducted to imitate the accuracy of human visual system for assessment of images. This chapter details about the approaches for development of methods for image quality assessment followed by brief introduction on existing image quality assessment methods. Later in the chapter, challenges for validation and development of image quality assessment metric for medical images are briefly discussed followed by the case study for assessment of ultrasound images of supraspinatus tendon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldmark, P., Dyer, J.: Quality in television pictures. Proc. Inst. Radio Eng. 28(8), 343–350 (1940)

    Google Scholar 

  2. Fellgett, P.B., Linfoot, E.H.: On the assessment of optical images. Philos. Trans. R. Soc. Lond. 247(931), 369–407 (1955)

    Article  MathSciNet  Google Scholar 

  3. Budrikis, Z.L.: Visual fidelity criterion and modeling. Proc. IEEE 60(7), 771–779 (1972). doi:10.1109/proc.1972.8776

    Article  Google Scholar 

  4. Chandler, D.M.: Seven challenges in image quality assessment: past, present, and future research. ISRN Signal Process. 2013, 53 (2013). doi:10.1155/2013/905685

    Article  Google Scholar 

  5. Zhou, W.: Applications of objective image quality assessment methods [applications corner]. Sig. Process. Mag. IEEE 28(6), 137–142 (2011). doi:10.1109/msp.2011.942295

    Article  Google Scholar 

  6. Schade, O.: Image Quality: A Comparison of Photographic and Television Systems. RCA Laboratories (1975)

    Google Scholar 

  7. Gupta, P., Srivastava, P., Bhardwaj, S., Bhateja, V.: A novel full reference image quality index for color images. In: Satapathy, S., Avadhani, P.S., Abraham, A. (eds.) Proceedings of the International Conference on Information Systems Design and Intelligent Applications 2012 (INDIA 2012) held in Visakhapatnam, India, January 2012, vol. 132, pp. 245–253. Springer, Berlin (2012)

    Google Scholar 

  8. Bhateja, V., Kalsi, A., Srivastava, A., Lay-Ekuakille, A.: A reduced reference distortion measure for performance improvement of smart cameras. Sens. J. IEEE 15(5), 2531–2540 (2015). doi:10.1109/jsen.2014.2361286

    Article  Google Scholar 

  9. Bhateja, V., Srivastava, A., Kalsi, A.: Fast SSIM index for color images employing reduced-reference evaluation. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013, vol. 247, pp. 451–458. Springer International Publishing (2014)

    Google Scholar 

  10. Watson, A.B., Taylor, M., Borthwick, R.: Image quality and entropy masking. In: Human Vision, Visual Processing, and Digital Display VIII, Proceedings of SPIE, vol. 3016, pp. 2–12 (1997)

    Google Scholar 

  11. Ninassi, A., LeMeur, O., Le Callet, P., Barba, D.: Does where you gaze on an image affect your perception of quality? Applying visual attention to image quality metric. In: Proceedings of the 14th IEEE International Conference on Image Processing (ICIP ’07), pp. II169–II172 (2007)

    Google Scholar 

  12. Rouse, D.M., Hemami, S.S., Pépion, R., Callet, P.L.: Estimating the usefulness of distorted natural images using an image contour degradation measure. J. Opt. Soc. Am. 28(2), 157–188 (2011)

    Article  Google Scholar 

  13. Vilankar, K., Vasu, L., Chandler, D.M.: On the visual perception of phase distortion. In: Rogowitz, B.E., Pappas, T.N. (eds.) HumanVision and Electronic Imaging, Proceedings of SPIE, San Francisco, Calif, USA (2011)

    Google Scholar 

  14. Gaubatz, M.D., Chandler, D.M., Hemami, S.S.: A patchbased structural masking model with an application to compression. Eurasip J. Image Video Process. 2009 (Article ID 649316) (2009)

    Google Scholar 

  15. Nadenau, M.J., Reichel, J.: Image compression related contrast masking measurements. In: Proceedings of the Human Vision and Electronic Imaging, vol. 3959, pp. 188–199 (2000)

    Google Scholar 

  16. DeValois, R.L., DeValois, K.K.: Spatial Vision. Oxford University Press (1990)

    Google Scholar 

  17. Barten, P.G.J.: Formula for the contrast sensitivity of the human eye. In: Imaging Quality and System Performance, Proceedings of SPIE, pp. 231–238 (2004)

    Google Scholar 

  18. Legge, G.E., Foley, J.M.: Contrastmasking in human vision. J. Opt. Soc. Am. 70, 1458–1470 (1980)

    Article  Google Scholar 

  19. Watson, A.B., Yang, G.Y., Solomon, J.A., Villasenor, J.: Visibility of wavelet quantization noise. IEEE Trans. Image Process. 6(8), 1164–1175 (1997)

    Article  Google Scholar 

  20. Daly, S.: Visible differences predictor: an algorithm for the assessment of image fidelity. Digital Images and Human Vision, pp. 179–206 (1993)

    Google Scholar 

  21. Zeng, W., Daly, S., Lei, S.: Point-wise extended visual masking for JPEG-2000 image compression. In: International Conference on Image Processing, pp. 657–660 (2000)

    Google Scholar 

  22. Zhang, Y., Pham, B., Eckstein, M.P.: Investigation of JPEG 2000 encoder options on model observer performance in signal known exactly but variable tasks (SKEV). In: Chakraborty, A.K.D.P. (ed.) Medical Imaging: Image Perception, Observer Performance, and Technology Assessment, Proceedings of SPIE, vol. 5034, pp. 371–382 (2003)

    Google Scholar 

  23. Campbell, F.W., Robson, J.G.: Application of fourier analysis to the visibility of gratings. J. Physiol. 197(3), 551–566 (1968)

    Article  Google Scholar 

  24. Schade, O.H.: Optical and photoelectric analog of the eye. J. Opt. Soc. Am. 46(9), 721–739 (1956)

    Article  Google Scholar 

  25. Graham, N.: Visual Pattern Analyzers. Oxford University Press, New York (1989)

    Book  Google Scholar 

  26. Watson, A.B., Solomon, J.A.: A model of visual contrast gain control and pattern masking. J. Opt. Soc. Am. 14, 2378–2390 (1997)

    Article  Google Scholar 

  27. Teo, P., Heeger, D.: Perceptual image distortion. In: Proceedings of the IEEE International Conference Image Processing (ICIP’94), vol. 2(982–986) (1994)

    Google Scholar 

  28. Lambrecht, C.J.B.: Working spatio-temporal model of the human visual system for image restoration and quality assessment applications. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’96), pp. 2291–2294 (1996)

    Google Scholar 

  29. Hassenpflug, P., Prager, R.W., Treece, G.M., Gee, A.H.: Speckle classification for sensorless freehand 3-D ultrasound. Ultrasound Med. Biol. 31(11), 1499–1508 (2005). doi:10.1016/j.ultrasmedbio.2005.07.007

    Article  Google Scholar 

  30. Ledesma-Carbayo, M.J., Kybic, J., Desco, M., Santos, A., Suhling, M., Hunziker, P., Unser, M.: Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation. IEEE Trans. Med. Imaging 24(9), 1113–1126 (2005). doi:10.1109/tmi.2005.852050

    Article  Google Scholar 

  31. Nadenau, M.J., Reichel, J.: Image compression related contrast masking measurements. In: Proceedings of the Human Vision and Electronic Imaging V, vol. 3959, pp. 188–199 (2000)

    Google Scholar 

  32. Winkler, S., Süsstrunk, S.: Visibility of noise in natural images. Human Vision and Electronic Imaging IX, Proceedings of SPIE, pp. 121–129 (2004)

    Google Scholar 

  33. Araki, T., Ikeda, N., Dey, N., Chakraborty, S., Saba, L., Kumar, D., Suri, J.S.: A comparative approach of four different image registration techniques for quantitative assessment of coronary artery calcium lesions using intravascular ultrasound. Comput. Methods Programs Biomed. 118(2), 158–172 (2015). doi:10.1016/j.cmpb.2014.11.006

    Article  Google Scholar 

  34. Tay, P.C., Acton, S.T., Hossack, J.A.: Ultrasound despeckling using an adaptive window stochastic approach. In: 2006 IEEE International Conference on Paper Presented at the Image Processing, 8–11 Oct. 2006

    Google Scholar 

  35. Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8), 987–1010 (2006). doi:10.1109/tmi.2006.877092

    Article  Google Scholar 

  36. Ghose, S., Oliver, A., Marti, R., Llado, X., Vilanova, J.C., Freixenet, J., Meriaudeau, F.: A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Comput. Methods Programs Biomed. 108(1), 262–287 (2012). doi:10.1016/j.cmpb.2012.04.006

    Article  Google Scholar 

  37. Massich, J., Meriaudeau, F., Pérez, E., Martí, R., Oliver, A., Martí, J.: Lesion segmentation in breast sonography. In: Martí, J., Oliver, A., Freixenet, J., Martí, R. (eds.) Digital Mammography, vol. 6136, pp. 39–45. Springer, Berlin (2010)

    Google Scholar 

  38. Noble, J.A.: Ultrasound image segmentation and tissue characterization. Proc. Inst. Mech. Eng. H 224(2), 307–316 (2010)

    Article  MathSciNet  Google Scholar 

  39. Prevost, R., Mory, B., Cuingnet, R., Correas, J.-M., Cohen, L., Ardon, R.: Kidney Detection and Segmentation in Contrast-Enhanced Ultrasound 3D Images. In: El-Baz, A.S., Saba, L., Suri, J. (eds.) Abdomen and Thoracic Imaging, pp. 37–67. Springer, US (2014)

    Chapter  Google Scholar 

  40. Rueda, S., Fathima, S., Knight, C.L., Yaqub, M., Papageorghiou, A.T., Rahmatullah, B., Noble, J.A.: Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge. IEEE Trans. Med. Imaging 33(4), 797–813 (2014). doi:10.1109/tmi.2013.2276943

    Article  Google Scholar 

  41. Massich, J., Meriaudeau, F., Sentís, M., Ganau, S., Pérez, E., Martí, R., Martí, J.: Automatic seed placement for breast lesion segmentation on US images. In: Maidment, A.A., Bakic, P., Gavenonis, S. (eds.) Breast Imaging, vol. 7361, pp. 308–315. Springer, Berlin (2012)

    Google Scholar 

  42. Ahumada, A.J., Null, C. H.: Digital images and human vision. In: chapter Image Quality: A Multidimensional Problem. MIT Press, Cambridge (1993)

    Google Scholar 

  43. Lenza, M., Buchbinder, R., Takwoingi, Y., Johnston, R.V., Hanchard, N.C., Faloppa, F.: Magnetic resonance imaging, magnetic resonance arthrography and ultrasonography for assessing rotator cuff tears in people with shoulder pain for whom surgery is being considered. Cochrane Database Syst. Rev. 9, CD009020 (2013). doi:10.1002/14651858.CD009020.pub2

  44. Teefey, S.A., Rubin, D.A., Middleton, W.D., Hildebolt, C.F., Leibold, R.A., Yamaguchi, K.: Detection and quantification of rotator cuff tears. Comparison of ultrasonographic, magnetic resonance imaging, and arthroscopic findings in seventy-one consecutive cases. J. Bone Joint Surg. Am. 86-A(4), 708–716 (2004)

    Google Scholar 

  45. Harold, L., Kundel, M.P.: Measurement of observer agreement. Radiology 228, 303–308 (2003)

    Google Scholar 

  46. Naredo, E., Moller, I., Moragues, C., de Agustin, J.J., Scheel, A.K., Grassi, W., Werner, C.: Interobserver reliability in musculoskeletal ultrasonography: results from a “Teach the Teachers” rheumatologist course. Ann. Rheum. Dis. 65(1), 14–19 (2006). doi:10.1136/ard.2005.037382

    Article  Google Scholar 

  47. Zhong, T., Tagare, H.D., Beaty, J.D.: Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images. IEEE Trans. Med. Imaging 25(11), 1483–1491 (2006). doi:10.1109/tmi.2006.881376

    Article  Google Scholar 

  48. Drakonaki, E.E., Allen, G.M., Wilson, D.J.: Real-time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clin. Radiol. 64(12), 1196–1202 (2009). doi:10.1016/j.crad.2009.08.006

    Article  Google Scholar 

  49. Ottenheijm, R.P., van’t Klooster, I.G., Starmans, L.M., Vanderdood, K., de Bie, R.A., Dinant, G.J., Cals, J.W.: Ultrasound-diagnosed disorders in shoulder patients in daily general practice: a retrospective observational study. BMC Fam. Pract. 15, 115 (2014). doi:10.1186/1471-2296-15-115

  50. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)

    Google Scholar 

  51. Zhou, W., Bovik, A.C.: A universal image quality index. Signal Process. Lett. IEEE 9(3), 81–84 (2002). doi:10.1109/97.995823

    Article  Google Scholar 

  52. Madabhushi, A., Metaxas, D.N.: Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. IEEE Trans. Med. Imaging 22(2), 155–169 (2003). doi:10.1109/tmi.2002.808364

    Article  Google Scholar 

  53. Abd-ElGawad, E.A., Ibraheem, M.A., Fouly, E.H.: Evaluation of supraspinatus muscle tears by ultrasonography and magnetic resonance imaging in comparison with surgical findings. Egypt. J. Radiol. Nuclear Med. 44(4), 829–834 (2013). doi:10.1016/j.ejrnm.2013.08.001

    Article  Google Scholar 

  54. Singh, J.P.: Shoulder ultrasound: what you need to know. Indian J. Radiol. Imaging 22(4), 284–292 (2012). doi:10.4103/0971-3026.111481

    Article  Google Scholar 

  55. Rutten, M.J., Jager, G.J., Kiemeney, L.A.: Ultrasound detection of rotator cuff tears: observer agreement related to increasing experience. AJR Am. J. Roentgenol. 195(6), W440–W446 (2010). doi:10.2214/ajr.10.4526

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Elamvazuthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, R., Elamvazuthi, I., George, J. (2016). Image Quality Assessment: A Case Study on Ultrasound Images of Supraspinatus Tendon. In: Dey, N., Bhateja, V., Hassanien, A. (eds) Medical Imaging in Clinical Applications. Studies in Computational Intelligence, vol 651. Springer, Cham. https://doi.org/10.1007/978-3-319-33793-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33793-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33791-3

  • Online ISBN: 978-3-319-33793-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics