Advertisement

The Microbiological Production of Hydrogen

  • Basanta Kumara Behera
  • Ajit Varma
Chapter

Abstract

It is organized to highlight the production of hydrogen from microalgae and fermentation bacteria. Hydrogen (H2) is being explored as a fuel for passenger vehicles. It can be used in fuel cell to power electric motors or burned in internal combustion engines (ICEs). It is an environmentally friendly fuel that has the potential to dramatically reduce our dependence on imported oil, but several significant challenges must be overcome before it can be widely used. Hydrogen produces no air pollutants or greenhouse gases when used in fuel cells; it produces only nitrogen oxides (NOx) when burned in ICEs. The authors have taken maximum interest to draw attentions of readers by illustrating impressive models on production of hydrogen by using the vast marine ecosystem as green energy power station.

Keywords

Green Alga Hydrogen Production Photosynthetic Bacterium Unicellular Green Alga Hydrogen Production Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jase MGJ et al (2002) Biohydrogen. Int J Hydrog Energy 27:1123–1124CrossRefGoogle Scholar
  2. 2.
    Miyamoto K (1994) Recombinant microbes for industrial and agricultural applications. In: Murooka Y, Imanaka T (eds) Marcel Dekker, New York, pp 771–785Google Scholar
  3. 3.
    Borowitzka MA (1988) Micro-algal biotechnology. In: Borowitzka MA, Borowitzka LJ (eds) Cambridge University Press, Cambridge, pp 257–287Google Scholar
  4. 4.
    Nath K et al (1983) Bio-energy technology—thermodynamics and costs. Wiley, New York, pp 8–13Google Scholar
  5. 5.
    Stone D (2012) Can algae power the future? National Geographical Magazine, 29 Nov 2012Google Scholar
  6. 6.
    Kamen MD, Gest H (1949) Evidence for a nitrogenase system in the photosynthetic bacterium Rhodospirillum rubrum. Science 109:558–560PubMedCrossRefGoogle Scholar
  7. 7.
    Spruit CP (1958) Simultaneous photoproduction of hydrogen and oxygen in Chlorella. Meded Landbouwhogeschool Wageningen 58:1–17Google Scholar
  8. 8.
    Frenkel AW (1952) Hydrogen evolution of the flagellate green alga Chlamydomonas moewusii. Arch Biochem Biophys 38:219–230PubMedCrossRefGoogle Scholar
  9. 9.
    Kessler E (1974) Hydrogenase, photoreduction and anaerobic growth of algae. In: Steward WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 454–473Google Scholar
  10. 10.
    Stuart TS, Gaffron H (1972) The mechanism of hydrogen photoproduction by several algae. II. The contribution of photosystem II. Planta (Berlin) 106:101–112CrossRefGoogle Scholar
  11. 11.
    Ben-Amotz A, Gibbs M (1975) H2 metabolism in photosynthetic organisms. II. Light-dependent H2 evolution by preparations from Chlamydomonas, Scenedesmus and spinach. Biochem Biophys Res Commun 5(64):355–359CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Michael Mechanic (2002) Reengineering algae to fuel the hydrogen economy. Newsstands Now 10.04 (April 2002)Google Scholar
  14. 14.
    Yang S et al (2013) De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq. Biotechnol Biofuel 6:118CrossRefGoogle Scholar
  15. 15.
    Review of the Department of Energy’s Genomics: GTL Program (2005) www.nap.edu/openbook.php?record_id-11581&page-28
  16. 16.
    Anja CH (2005) The anaerobic life of the photosynthetic alga Chlamydomonas reinhardtii photofermentation and hydrogen production upon sulphur deprivation. Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Biologie an der Internationalen Graduiertenschule Biowissenschaften der Ruhr-Universität BochumGoogle Scholar
  17. 17.
    Russel Haque (2012) What will be future of biofuel production in the context of scarce water resources? www.dnaindia.com Science & Technology. Hydrogen from algae—fuel of the future?
  18. 18.
    Surzycki R et al (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci 104:17548–17553PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kirst H et al (2012) Assembly of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii requires expression of the TLA2-CpFTSY gene. Plant Physiol 158:930–945PubMedCrossRefGoogle Scholar
  20. 20.
    Tetali SD et al (2007) Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene. Planta 225:813–829PubMedCrossRefGoogle Scholar
  21. 21.
    Melis T (2008) Maximizing light utilization efficiency and hydrogen production in microalgal cultures, 2008 Annual Progress Report, DOE Hydrogen Program. http://www.hydrogen.energy.gov/pdfs/progress08/ii
  22. 22.
    Iwuchukwu IJ et al (2010) Self-organized photosynthetic nanoparticle for cell-free hydrogen production. Nat Nanotechnol 5:73–79PubMedCrossRefGoogle Scholar
  23. 23.
    Yacoby I et al (2011) Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin: NADP + −oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci 108:9396–9401PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Utschig Lisa M et al (2011) Photocatalytic hydrogen production from noncovalent biohybrid photosystem I/Pt nanoparticle complexes. J Phys Chem Lett 2:236–241CrossRefGoogle Scholar
  25. 25.
    Utschig Lisa M et al (2011) Nature-driven photochemistry for catalytic solar hydrogen production: a photosystem I–transition metal catalyst hybrid. J Am Chem Soc 133:16334–16337PubMedCrossRefGoogle Scholar
  26. 26.
    Tao Y et al (2007) High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrog Energy 32:200–206CrossRefGoogle Scholar
  27. 27.
    Sigrun R et al (2014) Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase. Energy Environ Sci 7:3296–3301CrossRefGoogle Scholar
  28. 28.
    UChicago Argonne (2008) Algae could one day be major hydrogen fuel source. Source: Argonne National Laboratory, 1 Apr 2008Google Scholar
  29. 29.
    Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Amos WA (2004) Updated cost analysis of photobiological hydrogen production from Chlamydomonas reinhardtii green algae milestone completion report January 2004. NREL/MP-560-35593Google Scholar
  31. 31.
    Ching Maness et al. (2009) Photobiological Hydrogen production—prospects and challenges. Microbe Magazine, June 2009
  32. 32.
    Dharmadi Y (2005) A prospectus for biological H2 production … advances in biological hydrogen production processes. Int J Hydrog Energy 33:6046–6057 (Pagination dictionary.sensagent.com/biohydrogen/en-en)Google Scholar
  33. 33.
    Wendt H (1984) The electrolytic production of hydrogen. In: Hydrogen: energy vector of the future. Elsevier, pp 55–56Google Scholar
  34. 34.
    Harriman A, West MA (1982) West, photogeneration of hydrogen. Academic, LondonGoogle Scholar
  35. 35.
    Claesson S, Engstrom L (1977) Solar energy-photochemical conversion and storage. National Swedish Board for Energy Source Development, StockholmGoogle Scholar
  36. 36.
    Tian ZW, Cao Y (1993) Photochemical and photoelectrochemical conversion and storage of solar energy. In: Proceedings of the international conference on photochemical conversion and storage of solar energy, International Academic Publishers, BeijingGoogle Scholar
  37. 37.
    Pelizzetti E, Serpone N (1986) Homogeneous and heterogeneous photocatalysis, vol. C174. Reidel, DordrechtGoogle Scholar
  38. 38.
    Gratzel M (1989) Heterogeneous photochemical electron transfer. CRC Press, Boca RatonGoogle Scholar
  39. 39.
    Lehn JM (1981). In: Connolly JS (ed) Photochemical conversion and storage of solar energy. Academic, New York, p 16lGoogle Scholar
  40. 40.
    Kruse O et al (2005) Photochem Photobiol Sci 4:957PubMedCrossRefGoogle Scholar
  41. 41.
    Olson JM, Bernstein JD (1982) Ind Eng Chem Prod Res Dev 21:640Google Scholar
  42. 42.
    Gaffron H, Rubin J (1942) J Gen Physiol 26:219; Masukawa H, Mochimaru M, Sakurai H (2002) Int J Hydrog Energy 27:1471Google Scholar
  43. 43.
    Tamagnini P et al (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720. doi: 10.1111/j.1574-6976.2007.00085.x PubMedCrossRefGoogle Scholar
  44. 44.
    Troshina O et al (2002) Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int J Hydrog Energy 27:1283–1289CrossRefGoogle Scholar
  45. 45.
    Mariscal V, Flores E (2010) Multicellularity in a heterocyst-forming cyanobacterium: pathways for intercellular communication recent advances in phototrophic prokaryotes. In: Hallenbeck PC (ed) Springer, New York, pp 123–135Google Scholar
  46. 46.
    Department of Energy (2015) Hydrogen production: natural gas reforming. http://energy.gov/eere/fuelcells/hydrogen-p
  47. 47.
    Fang HP, Liu H (2001) Granulation of a hydrogen-producing acidogenic sludge. In: Proceedings of 9th world congress of anaerobic digestion, Antwerpen, Belgium, 2–6 Sept, p 527Google Scholar
  48. 48.
    Lay J (2000) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 5:269–278CrossRefGoogle Scholar
  49. 49.
    Lin C, Chang R (1999) Hydrogen production during the anaerobic acidogenic conversion of glucose. J Chem Technol Biotectnol 74:498CrossRefGoogle Scholar
  50. 50.
    Ueno Y et al (1996) Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng 82:194CrossRefGoogle Scholar
  51. 51.
    Nakamura M et al (1993) Fundamental studies on hydrogen production in the acid-forming phase and its bacteria in anaerobic treatment processes—the effects of solids retention time. Water Sci Technol 28:81Google Scholar
  52. 52.
    Thauer RK (1977) Limitation of microbial H2-formation via fermentation. Microb Energy 41:100–180Google Scholar
  53. 53.
    Kataoka N et al (1997) Study on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci Technol 36:41CrossRefGoogle Scholar
  54. 54.
    Mizuno O et al (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73:59CrossRefGoogle Scholar
  55. 55.
    Okamoto M et al (2000) Biological hydrogen potential of material characteristic of the organic fraction of municipal solid wastes. Water Sci Technol 41:25PubMedGoogle Scholar
  56. 56.
    Van Ginkel S et al (2001) Biohydrogen production as a function of ph and substrate concentration. Environ Sci Technol 35:4726PubMedCrossRefGoogle Scholar
  57. 57.
    Sylvia DM et al (1999) Principle and applications of soil microbiology. Prentice Hall, Upper Saddle River, NJ, p 55Google Scholar
  58. 58.
    Doyle MP (1989) Foodborne bacterial pathogens, 10th edn. Marcel Dekker, New YorkGoogle Scholar
  59. 59.
    Alexander M (1977) Soil microbiology, 2nd edn. Wiley, New YorkGoogle Scholar
  60. 60.
    Doyle EM (2002) Clostridium perfringens growth during cooling of thermal processed meat products. FRI Briefings, Food Research Institute, University of Wisconsin-Madison, WisconsinGoogle Scholar
  61. 61.
    Hui YH et al (1994) Foodborne disease handbook volume 1: diseases caused by bacteria, 10th edn. Marcel Dekker, New YorkGoogle Scholar
  62. 62.
    Wang A-J et al (2011) Biohydrogen production from anaerobic fermentation. Biofuel Bioenergy 128 (Advances in Biochemical Engineering Biotechnology Series):143–163Google Scholar
  63. 63.
    Larimer FW et al (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61PubMedCrossRefGoogle Scholar
  64. 64.
    Gosse JL et al (2010) Progress toward a biomimetic leaf: 4000 h of hydrogen production by coating-stabilized nongrowing photosynthetic Rhodopseudomonas palustris. Biotechnol Prog 26:907–918PubMedGoogle Scholar
  65. 65.
    Huang JJ, Heiniger EK (2010) Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris. Appl Environ Microbiol 76:7717–7722PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    McKinlay JB, Harwood CS (2010) Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci USA 107:11669–11675PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    McKinlay JB, Harwood CS (2010) Photobiological production of hydrogen gas as a biofuel. Curr Opin Biotechnol 21:244–251PubMedCrossRefGoogle Scholar
  68. 68.
    Melis A, Melnicki MR (2006) Integrated biological hydrogen production. Int J Hydrog Energy 31:1563–1573CrossRefGoogle Scholar
  69. 69.
    Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631PubMedCrossRefGoogle Scholar
  70. 70.
    Oda YFW et al (2008) Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments. Proc Natl Acad Sci USA 105:18543–18548PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111PubMedCrossRefGoogle Scholar
  72. 72.
    Mormile MR (2014) Going from microbial ecology to genome data and back: studies on a haloalkaliphilic bacterium isolated from Soap Lake, Washington State. Front Microbiol 5. doi: 10.3389/fmicb.2014.00628
  73. 73.
    Lynd LR et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. doi: 10.1128/MMBR.66.3.506-577.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Islam R et al (2009) Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation of cellulose by Clostridium thermocellum. Appl Microbiol Biotechnol 82:141–148. doi: 10.1007/s00253-008-1763-0 PubMedCrossRefGoogle Scholar
  75. 75.
    Islam R et al (2006) Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405. Appl Microbiol Biotechnol 72:576–583. doi: 10.1007/s00253-006-0316-7 PubMedCrossRefGoogle Scholar
  76. 76.
    Magnusson L, Islam R (2008) Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int J Hydrog Energy 33:5398–5403. doi: 10.1016/j.ijhydene.2008.06.018 CrossRefGoogle Scholar
  77. 77.
    Chong ML et al (2009) Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology. Int J Hydrog Energy 34:7475–7482. doi: 10.1016/j.ijhydene.2009.05.088 CrossRefGoogle Scholar
  78. 78.
    Wang J (2008) Optimization of fermentative hydrogen production process by response surface methodology. Int J Hydrog Energy 33:6976–6984. doi: 10.1016/j.ijhydene.2008.08.051 CrossRefGoogle Scholar
  79. 79.
    Pan CM et al (2008) Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium. sp. Fanp2. Bioresour Technol 99:3146–3154. doi: 10.1016/j.biortech.2007.05.055 PubMedCrossRefGoogle Scholar
  80. 80.
    Ding HB et al (2010) Caproate formation in mixed-culture fermentative hydrogen production. Bioresour Technol 101(24):9550–9559. doi: 10.1016/j.biortech.2010.07.056 PubMedCrossRefGoogle Scholar
  81. 81.
    Morita S (1980) Responses of photosynthetic bacteria to light quality, light intensity, temperature, CO2, HCO2 and pH. In: Mitsuii A, Black C (eds) Hand-book biosolar resources, 1 fundamental principle. CRC PressGoogle Scholar
  82. 82.
    Winter JV, Wolfe RS (1980) Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch Microbiol 124:73–79PubMedCrossRefGoogle Scholar
  83. 83.
    Palmer JR, Reeve JN (1993) In: Sebald M (ed) Genetics and molecular biology of anaerobic bacteria. Springer-Verlag, New York, pp 13–35Google Scholar
  84. 84.
    Howarth DC, Codd GA (1985) The uptake and production of molecular hydrogen by unicellular cyanobacteria. J Gen Microbiol 131:1561–1569Google Scholar
  85. 85.
    Lambert GR, Smith GD (1977) Hydrogen formation by marine Blue-green algae. FEBS Lett 83:159–162. doi: 10.1016/0014-5793(77)80664-9 PubMedCrossRefGoogle Scholar
  86. 86.
    Phlips EJ, Mitsui A (1983) Role of light intensity and temperature in the regulation of hydrogen photoproduction by the marine cyanobacterium Oscillatoria sp. Strain Miami BG7. Appl Environ Microbiol 45:1212–1220PubMedPubMedCentralGoogle Scholar
  87. 87.
    Heyer H et al (1989) Simultaneous heterolatic and acetate fermentation in the marine cyanobacterium Oscillatoria limosa incubated anaerobically in the dark. Arch Microbiol 151:558–564. doi: 10.1007/BF00454875 CrossRefGoogle Scholar
  88. 88.
    Van der Oost J et al (1989) Fermentation metabolism of the unicellular cyanobacterium Cyanothece PCC 7822. Arch Microbiol 152:415–419. doi: 10.1007/BF00446921 CrossRefGoogle Scholar
  89. 89.
    Sveshnikov DA et al (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEBS Microbiol Lett 147:297–301. doi: 10.1016/S0378-1097(97)00005-0 CrossRefGoogle Scholar
  90. 90.
    Famiglietti M et al (1993) Surfactant-induced hydrogen production in cyanobacteria. Biotechnol Bioeng 42:1014–1018. doi: 10.1002/bit.260420812 PubMedCrossRefGoogle Scholar
  91. 91.
    Moezelaar R et al (1996) Fermentation and sulfur reduction in the mat-building cyanobacterium Microcoleus chtonoplastes. Appl Environ Microbiol 62:1752–1758PubMedPubMedCentralGoogle Scholar
  92. 92.
    Serebryakova LT et al (2000) H2-uptake and evolution in the unicellular cyanobacterium Chroococcidiopsis thermalis CALU 758. Plant Physiol Biochem 38:525–530. doi: 10.1016/S0981-9428(00)00766-X CrossRefGoogle Scholar
  93. 93.
    Moezelaar R, Stal LJ (1994) Fermentation in the unicellular cyanobacterium Microcystis PCC7806. Arch Microbiol 162:63–69. doi: 10.1007/s002030050102 CrossRefGoogle Scholar
  94. 94.
    Masukawa H, Nakamura K, Mochimaru M, Sakurai H (2001) Photobiological hydrogen production and nitrogenase activity in some heterocystous cyanobacteria. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen II. Elsevier, Oxford, pp 63–66CrossRefGoogle Scholar
  95. 95.
    Happe T et al (2000) Böhme transcriptional and mutational analysis of the uptake hydrogenase of the filamentous Anabaena variabilis ATCC 29413. J Bacteriol 182:1624–1631. doi: 10.1128/JB.182.6.1624-1631 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Tsygankov AA et al (1998) Acetylene reduction and hydrogen photoproduction by wild type and mutant strains of Anabaena at different CO2 and O2 concentrations. FEMS Microbiol Lett 167:13–17. doi: 10.1016/S0378-1097(98)00361-9 CrossRefGoogle Scholar
  97. 97.
    Fedorov AS et al. (2001) Production of hydrogen by an Anabaena variabilis mutant in photobioreactor under aerobic outdoor conditions. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen II. Elsevier, pp 223–228Google Scholar
  98. 98.
    Markov SA et al (1995) Hydrogen photoproduction and carbon dioxide uptake by immobilized Anabaena variabilis in a hollow-fiber photobioreactor. Enzyme Microbial Technol 17:306–310. doi: 10.1016/01etal.41-0229(94)00010-7 CrossRefGoogle Scholar
  99. 99.
    Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 13–35Google Scholar
  100. 100.
    Whitton BA, Potts M (2000) Introduction to the cyanobacteria. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 1–11Google Scholar
  101. 101.
    Adams DG (2000) Symbiotic interactions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 523–561Google Scholar
  102. 102.
    Bergman BA et al (1996) Chemical signalling in cyanobacterial-plant symbiosis. Trends Plant Sci 6:191–197CrossRefGoogle Scholar
  103. 103.
    Meeks JC (1988) Symbiotic associations. Methods Enzymol 167:113–125CrossRefGoogle Scholar
  104. 104.
    Rai NE et al (2000) Cyanobacterium-plant symbioses. New Phytol 147:449–481CrossRefGoogle Scholar
  105. 105.
    Smith DC, Douglas AE (1987) The biology of symbiosis. Edward Arnold Publishers, LondonGoogle Scholar
  106. 106.
    Douglas SE (1994) Chloroplasts origins and evolution. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 91–118CrossRefGoogle Scholar
  107. 107.
    Kotani HS, Tabata S (1998) Lessons from sequencing of the genome of a unicellular cyanobacterium, Synechocystis sp. PCC 6803. Annu Rev Plant Physiol Plant Mol Biol 49:151–171PubMedCrossRefGoogle Scholar
  108. 108.
    Anagnostidis K, Komárek J (1985) Modern approach to the classification system of cyanophytes. 1. Introduction. Arch Hydrobiol Suppl 71:291–302Google Scholar
  109. 109.
    Anagnostidis K, Komárek J (1988) Modern approach to the classification system of cyanophytes. 3-Oscillatoriales. Arch Hydrobiol Suppl 80:327–472Google Scholar
  110. 110.
    Anagnostidis K, Komárek J (1990) Modern approach to the classification system of cyanophytes. 5-Stigonematales. Arch Hydrobiol Suppl 86:1–73Google Scholar
  111. 111.
    Komárek J, Anagnostidis K (1986) Modern approach to the classification system of cyanophytes. 2-Chroococcales. Arch Hydrobiol Suppl 73:157–226Google Scholar
  112. 112.
    Komárek J, Anagnostidis K (1989) Modern approach to the classification system of cyanophytes. 4-Nostocales. Arch Hydrobiol Suppl 82:247–345Google Scholar
  113. 113.
    Rippka R et al (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  114. 114.
    Rippka R, Herdman M (1992) Pasteur culture collection of cyanobacterial strains in axenic culture. Catalogue & taxonomic handbook, vol. 1. Catalogue of strains. Institute Pasteur, ParisGoogle Scholar
  115. 115.
    Stanier RY et al (1978) Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the international code of nomenclature of bacteria. Int J Syst Bacteriol 28:335–336CrossRefGoogle Scholar
  116. 116.
    Wilmotte A (1994) Molecular evolution and taxonomy of the cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 1–25CrossRefGoogle Scholar
  117. 117.
    Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. In: Bhattacharya D (ed) Origins of algae and their plastids. Springer, Vienna, pp 13–52CrossRefGoogle Scholar
  118. 118.
    Kaneko TS et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 30:185–209CrossRefGoogle Scholar
  119. 119.
    Nakamura Y, Kaneko, Hirosawa M (1998) CyanoBase, a www database containing the complete genome of Synechocystis sp. strain PCC 6803. Nucleic Acids Res 20:63–67CrossRefGoogle Scholar
  120. 120.
    Houchins JP (1984) The physiology and biochemistry of hydrogen metabolism in cyanobacteria. Biochim Biophys Acta 768:227–255CrossRefGoogle Scholar
  121. 121.
    Appel J, Schulz R (1998) Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? J Photochem Photobiol Ser B 47:1–11CrossRefGoogle Scholar
  122. 122.
    Bergman B et al (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185CrossRefGoogle Scholar
  123. 123.
    Flores E, Herrero A (1994) Molecular evolution and taxonomy of the cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 487–517CrossRefGoogle Scholar
  124. 124.
    Hansel A, Lindblad P (1998) Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source. Appl Microbiol Biotechnol 50:153–160CrossRefGoogle Scholar
  125. 125.
    Lindblad P (1999) Cyanobacterial H2-metabolism: knowledge and potential/strategies for a photobiotechnological production of H2. Biotechnology 16:141–144Google Scholar
  126. 126.
    Lindblad P, Hansel A, Oxelfelt, Tamagnini P, Troshina O (1998) Nostoc PCC73102 and H2. Knowledge, research and biotechnological challenges. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, New York, NY, pp 53–63Google Scholar
  127. 127.
    Lindblad P, Tamagnini P (2001) Cyanobacterial hydrogenases and biohydrogen: present status and future potential. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen II. Elsevier, Oxford, pp 143–169CrossRefGoogle Scholar
  128. 128.
    Masepohl BK et al (1997) The heterocyst-specific fdxH gene product of the cyanobacterium Anabaena sp. PCC 7120 is important but not essential for nitrogen fixation. Mol Gen Genet 253:770–776PubMedCrossRefGoogle Scholar
  129. 129.
    Orme-Johnson WH (1992) Nitrogenase structure: where to now. Science 257:1639–1640PubMedCrossRefGoogle Scholar
  130. 130.
    Böhme H (1998) Regulation of nitrogen fixation in heterocyst-forming cyanobacteria. Trends Plant Sci 3:346–351CrossRefGoogle Scholar
  131. 131.
    Thiel T, Pratte B (2001) Effect on heterocyst differentiation of nitrogen fixation in vegetative cells of the cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 183:280–286PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Matthijs HCP et al (1994) Prochlorophytes: the other cyanobacteria? In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 49–64CrossRefGoogle Scholar
  133. 133.
    Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373PubMedPubMedCentralGoogle Scholar
  134. 134.
    Mulholland MR, Capone DG (2000) The nitrogen physiology of the marine N2-fixing cyanobacteria Trichodesmium spp. Trends Plant Sci 5:148–153PubMedCrossRefGoogle Scholar
  135. 135.
    Stal LJ (2000) Cyanobacterial mats and stromatolites. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 61–120Google Scholar
  136. 136.
    Wolk CP (1996) Heterocyst formation. Annu Rev Genet 30:59–78PubMedCrossRefGoogle Scholar
  137. 137.
    Wolk CP et al (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 769–823CrossRefGoogle Scholar
  138. 138.
    Huang TC et al (1999) Organization and expression of nitrogen-fixation genes in the aerobic nitrogen-fixing unicellular cyanobacterium Synechococcus sp. strain RF-1. Microbiology 145:743–753PubMedCrossRefGoogle Scholar
  139. 139.
    Misra HS, Tuli R (2000) Differential expression of photosynthesis and N2-fixation genes in the cyanobacterium Plectonema boryanum. Plant Physiol 468:731–736CrossRefGoogle Scholar
  140. 140.
    Cheng JCR et al (1999) Effects of inorganic nitrogen compounds on the activity and synthesis of nitrogenase in Gloeothece (Nägeli) sp. ATCC 27152. New Phytol 141:61–70CrossRefGoogle Scholar
  141. 141.
    Fredriksson C, Bergman B (1997) Ultrastructural characterisation of cells specialized for nitrogen fixation in a non-heterocystous cyanobacterium Trichodesmium spp. Protoplasma 197:76–85CrossRefGoogle Scholar
  142. 142.
    Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935–938PubMedCrossRefGoogle Scholar
  143. 143.
    Yoon HS, Golden JW (2001) PatS and products of nitrogen fixation control heterocyst pattern. J Bacteriol 183:2605–2613PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Carrasco CD et al (1995) Programed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci USA 92:791–795PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Carrtasco CD, Golden JW (1995) Two heterocyst-specific DNA rearrangements of nif operons in Anabaena cylindrica and Nostoc sp. strain Mac. Microbiology 141:2479–2487CrossRefGoogle Scholar
  146. 146.
    Carrasco CD et al (1994) Anabaena xisF gene encodes a developmentally regulated site-specific recombinase. Genes Dev 8:74–83PubMedCrossRefGoogle Scholar
  147. 147.
    Mulligan ME, Haselkorn R (1989) Nitrogen-fixation (nif) genes of the cyanobacterium Anabaena sp. strain PCC 7120: the nifB-fdxN-nifS-nifU operon. J Biol Chem 26:19200–19207Google Scholar
  148. 148.
    Ramaswamy KS et al (1997) Cell-type specificity of the Anabaena fdxN element rearrangement requires xisH and xisI. Mol Microbiol 23:1241–1249PubMedCrossRefGoogle Scholar
  149. 149.
    Wünschiers R et al (2003) Presence and expression of hydrogenase specific C-terminal endopeptidases in cyanobacteria. BMC Microbiol 3(2003):8. doi: 10.1186/1471-2180-3-8 PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Germer F, Zebger I (2009) Overexpression, isolation, and spectroscopic characterization of the bidirectional [NiFe] hydrogenase from Synechocystis sp. PCC 6803. J Biol Chem 284:36462–36472. doi: 10.1074/jbc.M109.028795 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Cournac L et al (2003) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186, 2004:1737–1746. doi: 10.1128/JB.186.6.1737-1746.2003
  152. 152.
    Schmitz G et al (1995) Molecular biological analysis of a bidirectional hydrogenase from cyanobacteria. Eur J Biochem 233(1):266–276. doi: 10.1111/j.1432-1033 PubMedCrossRefGoogle Scholar
  153. 153.
    Appel J et al (2000) The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch Microbiol 173(5–6):333–338. doi: 10.1007/s002030000139 PubMedCrossRefGoogle Scholar
  154. 154.
    Tamagnini P et al (1997) Hydrogenases in Nostoc sp. strain PCC 73102, a strain lacking a bidirectional enzyme. Appl Environ Microbiol 63:1801–1807PubMedPubMedCentralGoogle Scholar
  155. 155.
    Kentemich T et al (1989) Localization of the reversible hydrogenase in cyanobacteria. Zeitschrift für Naturforschung C/J Biol Sci 44:384–391Google Scholar
  156. 156.
    Serebriakova L et al (1994) Hydrogenase in Anabaena variabilis ATCC 29413: presence and localization in non-N2-fixing cells. Arch Microbiol 161(2):140–144. doi: 10.1007/BF00276474 Google Scholar
  157. 157.
    Tamagnini P et al (2000) Diversity of cyanobacterial hydrogenases, a molecular approach. Curr Microbiol 40:356–361. doi: 10.1007/s002840010070 PubMedCrossRefGoogle Scholar
  158. 158.
    Tamagnini P et al (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66(1):1–20. doi: 10.1128/MMBR.66.1.1-20.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Vignais PM et al (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501. doi: 10.1016/S0168-6445 PubMedCrossRefGoogle Scholar
  160. 160.
    Happe T et al (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182:1624–1631. doi: 10.1128/JB.182.6.1624-1631.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Mikheeva LE et al (1995) Mutants of the cyanobacterium Anabaena variabilis altered in hydrogenase activities. Zeitschrift für Naturforschung C/J Biol Sci 50:505–510Google Scholar
  162. 162.
    Masukawa H et al (2002) Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen- fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58(5):618–624. doi: 10.1007/s00253-002-0934-7 PubMedCrossRefGoogle Scholar
  163. 163.
    Khetkorn W et al (2012) Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012. J Biol Eng 6:19. doi: 10.1186/1754-1611-6-19 PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Yoshino F et al (2007) High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Marine Biotechnol 9(1):101–112. doi: 10.1007/s10126-006-6035-3 CrossRefGoogle Scholar
  165. 165.
    Sherman LA et al (2010) Better living through Cyanothece—unicellular diazotrophic cyanobacteria with Highly versatile metabolic systems. Adv Exp Med Biol 675:275–290. doi: 10.1007/978-1-4419-1528-3_16 PubMedCrossRefGoogle Scholar
  166. 166.
    Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Gaffron H (1939) Reduction of CO2 with H2 in green plants. Nature 143:204–205CrossRefGoogle Scholar
  168. 168.
    Gaffron H (1944) Photosynthesis, photoreduction and dark reduction of carbon dioxide in certain algae. Biol Rev Camb Philos Soc 19:1–20CrossRefGoogle Scholar
  169. 169.
    Roessler PG, Lien S (1984) Activation and de novo synthesis of hydrogenase in Chlamydomonas. Plant Physiol l76:1086–1089CrossRefGoogle Scholar
  170. 170.
    Schulz R (1996) Hydrogenases and hydrogen production in eukaryotic organisms and cyanobacteria. J Mar Biotechnol 4:16–22Google Scholar
  171. 171.
    Voordouw G et al (1989) Organization of the genes encoding [Fe] hydrogenase in Desulfovibrio vulgaris. J Bacteriol 171:3881–3889PubMedPubMedCentralGoogle Scholar
  172. 172.
    Adams MWW (1990) The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020:115–145PubMedCrossRefGoogle Scholar
  173. 173.
    Meyer J, Gagnon J (1991) Primary structure of hydrogenase I from Clostridium pasteurianum. Biochemistry 30:9697–9704PubMedCrossRefGoogle Scholar
  174. 174.
    Happe T et al (1994) Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem 222:769–774PubMedCrossRefGoogle Scholar
  175. 175.
    Florin L et al (2001) A novel type of Fe-hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetical electron transport chain. J Biol Chem 276:6125–6132PubMedCrossRefGoogle Scholar
  176. 176.
    Ghirardi ML et al (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511PubMedCrossRefGoogle Scholar
  177. 177.
    Ghirardi ML et al (1997) Oxygen sensitivity of algal H2 production. Appl Biochem Biotechnol 63–65:141–151PubMedCrossRefGoogle Scholar
  178. 178.
    Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269:1022–1032PubMedCrossRefGoogle Scholar
  179. 179.
    Melis A et al (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Wykoff DD et al (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–139PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Melis A (2007) Photosynthetic H2metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226:1075–1086PubMedCrossRefGoogle Scholar
  182. 182.
    Gfeller RP, Gibbs M (1984) Fermentative metabolism of Chlamydomonas reinhardtii. I. Analysis of fermentative products from starch in dark and light. Plant Physiol 75:212–218PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Gibbs M et al (1986) Fermentative metabolism of Chlamydomonas reinhardtii. III. Photo assimilation of acetate. Plant Physiol 82:160–166PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Fouchard S et al (2005) Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microbiol 71:6199–6205PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Mus F et al (2005) Inhibitor studies on non-photochemical plastoquinone reduction and H2 photoproduction in Chlamydomonas reinhardtii. Biochim Biophys Acta 1708:322–332PubMedCrossRefGoogle Scholar
  186. 186.
    White A, Melis A (2006) Biochemistry of hydrogen metabolism in Chlamydomonas reinhardtii wild type and a Rubisco-less mutant. Int J Hydrog Energy 31:455–464CrossRefGoogle Scholar
  187. 187.
    Hemschemeier A (2008) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227:397–407PubMedCrossRefGoogle Scholar
  188. 188.
    Greenbaum E (1988) Energetic efficiency of hydrogen photoevolution by algal water splitting. Biophys J 54:365–368PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Greenbaum E et al (1995) CO2 fixation and photoevolution of H2 and O2 in a mutant of Chlamydomonas lacking photosystem I. Nature 376:438–441CrossRefGoogle Scholar
  190. 190.
    Miura Y et al (1986) Isolation and characterization of a unicellular green alga exhibiting high activity in dark hydrogen production. Agric Biol Chem 50:2837–2844Google Scholar
  191. 191.
    Ike A et al (1996) Environmentally friendly production of H2 incorporating microalgal CO2 fixation. J Mar Biotechnol 4:47–51Google Scholar
  192. 192.
    Greenbaum E et al (1983) Hydrogen and oxygen photoproduction by marine algae. Photochem Photobiol 37:649–655CrossRefGoogle Scholar
  193. 193.
    Kessler E (1974) Hydrogenase, photoreduction and anaerobic growth. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 456–473Google Scholar
  194. 194.
    Bamberger ES et al (1982) H2 and CO2 evolution by anaerobically adapted Chlamydomonas reinhardtii F60. Plant Physiol 69:1268–1273PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Shinozaki K et al (1986) The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression. EMBO J5:2043–2049Google Scholar
  196. 196.
    Kubicki A et al (1996) Differential expression of plastome-encoded ndh genes in mesophyll and bundle-sheath chloroplasts of the C-4 plant sorghum bicolor indicates that the complex I-homologous NAD(P)H-plastoquinone oxidoreductase is involved. Planta 199:276–281CrossRefGoogle Scholar
  197. 197.
    Sazanov LA et al (1998) The plastid ndh genes code for an NADH-specific dehydrogenase: isolation of a complex I analogue from pea thylakoid membranes. Proc Natl Acad Sci USA 95:1319–1324PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Turmel M et al (1999) The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. Proc Natl Acad Sci USA 96:10248–10253PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Godde D, Trebst A (1980) NADH as electron donor for the photosynthetic membrane of Chlamydomonas reinhardtii. Arch Microbiol 127:245–252CrossRefGoogle Scholar
  200. 200.
    Benemann JR (1998) The technology of biohydrogen. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, New York, pp 19–30Google Scholar
  201. 201.
    Cammack R et al (2001) Hydrogen as fuel: learning from nature. Taylor & Francis, LondonCrossRefGoogle Scholar
  202. 202.
    Benemann JR (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103PubMedCrossRefGoogle Scholar
  203. 203.
    Uffen RL (1976) Anaerobic growth of a phodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl Acad Sci USA 73:3298–3302PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Kondratieva EN, Gogotov (1983) Production of molecular hydrogen in microorganisms. Adv Biochem Eng Biotechnol 28:139–191Google Scholar
  205. 205.
    Weaver P et al (1997) Biological H2 from syngas and from H20. In: Proceedings of the 1997 U.S. doe hydrogen program review, Herndon, VA, 21–23 May 1997, pp 33–40Google Scholar
  206. 206.
    Maness P-C, Weaver P (2002) Hydrogen production from a carbon monoxide oxidation pathway in Rubrivivax gelatinosus. Int J Hydrog Energy 27:1407–1411CrossRefGoogle Scholar
  207. 207.
    Wolfrum EJ, Maness P (2003) Biological water gas shift. U.S. DOE Hydrogen, Fuel Cell and Infrastructure Technologies Program Review, Berkeley, CAGoogle Scholar
  208. 208.
    Gossett JM (1995) Bioenergetics and stoichiometry. Course notes. CEE756—environmental engineering processes II. Cornell University, Ithaca, NYGoogle Scholar
  209. 209.
    Tanisho S (1996) feasibility study of biological hydrogen production from sugar cane by fermentation. Hydrogen energy progress XI. In: Proceedings of the 11th world hydrogen energy conference, Stuttgart, Germany, pp 2601–2606Google Scholar
  210. 210.
    Yazdani SS, Gonzales R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10:340–351CrossRefGoogle Scholar
  211. 211.
    Bart JCJ, Palmeri N (2010) Biodiesel science and technology: from soil to oil. Woodhead Publishing Limited, CambridgeCrossRefGoogle Scholar
  212. 212.
    Sakurai H, Masukawa H (2007) Promoting R&D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Mar Biotechnol 9:128–145. doi: 10.1007/s10126-006-6073-x PubMedCrossRefGoogle Scholar
  213. 213.
    Sakurai H, Inoue K et al (2010) A feasibility study of large-scale photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Adv Exp Med Biol 675:291–303PubMedCrossRefGoogle Scholar
  214. 214.
    Kitashima M, Inoue K et al (2012) Flexible plastic bioreactors for photobiological hydrogen production by hydrogenase-deficient cyanobacteria. Biosci Biotechnol Biochem 76:831–833. doi: 10.1271/bbb.110808 PubMedCrossRefGoogle Scholar
  215. 215.
    Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing Ltd, Oxford, pp 178–214Google Scholar
  216. 216.
    Fernández-Sevilla JM et al (2014) Photobioreactors design for hydrogen production. In: Zannoni D, Philippis RD (eds) Microbial bioenergy: hydrogen production. Springer, Dordrecht, pp 291–322CrossRefGoogle Scholar
  217. 217.
    Balat M (2008) Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrog Energ 33:4013–4029CrossRefGoogle Scholar
  218. 218.
    Tracking Clean Energy Technology Perspectives excerpt as IEA input to the Clean Energy Ministerial (2012) Progress. www.iea.org/media/workshops/2014/asiahydrogenworkshop/1.11
  219. 219.
    (2014) Hydrogen generation market by geography, by mode of generation & delivery, applications and technology -global trends & forecasts to 2019. marketsandmarkets.com. Publishing Date: September 2014 Report Code: EP 2781. http://www.marketsandmarkets.com/Market-Reports/hydrogen-generation-market-494.html
  220. 220.
    Sakurai H et al (2015) How close we are to achieving commercially viable large-scale photobiological hydrogen production by cyanobacteria: a review of the biological aspects. Life (Basel) 5:997–1018Google Scholar
  221. 221.
    Saxena SK (2003) Hydrogen production by chemically reacting species. Int J Hydrog Energ 28:49–53CrossRefGoogle Scholar
  222. 222.
    International Energy Agency (IEA) (2015) Key world energy statistics. http://www.iea.org/publications/freepublications/publication/KeyWorld2014.pdf
  223. 223.
    (2011) Breakthrough for bacterial hydrogen production. http://www.rsc.org/chemistryworld/News/2011/February/11021103.asp
  224. 224.
    Seedorf H et al (2008) The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci USA 105(6):2128–2133PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Sim MS (2013) Fractionation of sulfur isotopes by Desulfovibrio vulgaris mutants lacking hydrogenases or type I tetraheme cytochrome c 3. Front Microbiol 4:171. doi: 10.3389/fmicb.2013.00171 PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, OxfordCrossRefGoogle Scholar
  227. 227.
    Kruse O et al (2005) Photosynthesis: a blue print for energy capture and conversion technologies. Photochem Photobiol 4:957–970CrossRefGoogle Scholar
  228. 228.
    Rupprecht J, Hankamer B et al (2006) Perspectives and advances of biological H2 production in microorganisms. Appl Microbiol Biotechnol 72:442–449PubMedCrossRefGoogle Scholar
  229. 229.
    Allakhverdiev VD et al (2009) Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. Photochem Photobiol Sci 8:148–156PubMedCrossRefGoogle Scholar
  230. 230.
    Lee CM et al (2002) Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. Int J Hydrog Energy 27:1309–1313CrossRefGoogle Scholar
  231. 231.
    Philip EJ, Mitsui A (1982) Temperature preference and tolerance of aquatic photosynthetic microorganisms. In: Mitsuii A, Black CC (eds) CRC hand-book of biosolar resources, basic principles, part 2, vol 1. CRC, Boca Raton, FL, pp 335–561Google Scholar
  232. 232.
    Kondratieva EN (1976) Photosynthetic bacteria to light quality, light intensity, temperature, CO2, HCO, and pH. In: Mitsuii A, Black CC (eds) Handbook biosolar resources 1, fundamental principle, pp 205–209Google Scholar
  233. 233.
    Oxelfelt F et al (1998) Hydrogen uptake in Nostoc sp. strain PCC 73102 cloning and characterization of a hup St. homologue. Arch Microbiol 169:259–264CrossRefGoogle Scholar
  234. 234.
    Jones LW, Bishop NI (1976) Simultaneous measurement of oxygen and hydrogen exchange from the blue green algae Anabaena sp. Plant Physiol 57:659PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Healer FP (1970) The mechanism of hydrogen evolution by Chlamydomonas moewusii. Plant Physiol 45:153–157CrossRefGoogle Scholar
  236. 236.
    Klein H, Betz A (1978) Fermentative metabolism of hydrogen-evolving Chlamydomonas moewusii. Plant Physiol 61:953–959PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Amon DL et al (1961) Photoproduction of hydrogen, photofixation of nitrogen and unified concept of photosynthesis. Nature 190:601–609CrossRefGoogle Scholar
  238. 238.
    Amon DL et al (1996) Photo-production of hydrogen gas coupled with photosynthetic photophosphorylation. Science 134:1425–1432Google Scholar
  239. 239.
    Stiffler HJ, Gest H (1979) Effect of light intensity and nitrogen growth source on hydrogen metabolism in Rhodospirillum rubrum. Science 120:1024–1026CrossRefGoogle Scholar
  240. 240.
    Schick HJ (1971) Interrelationship of nitrogen fixation, hydrogen evolution and photoreduction in Rhodospirillum rubrum. Arch Microbiol 75:102–109Google Scholar
  241. 241.
    Kumar A et al (1995) Increased hydrogen production by immobilized microorganisms. World J Microbiol Biotechnol 11:156–159PubMedCrossRefGoogle Scholar
  242. 242.
    Khoshoo TN (1991) Energy from plants: problem and prospect. In: Khoshoo TN (ed) Environment concerns and strategies. Armish Publish House, New Delhi, pp 255–372Google Scholar
  243. 243.
    Sasikala K et al (1992) Photoproduction of hydrogen from waste water of a distillery by Rhodobacter sphaeroides OV 001. Int J Hydrog Energy 17:23–27CrossRefGoogle Scholar
  244. 244.
    Thangaraj A, Kulandaivelu G (1994) Biological hydrogen photoproduction using dairy and sugarcane wastes. Bioresour Technol 48:9–12CrossRefGoogle Scholar
  245. 245.
    Bishop NI, Frick H (1977) Photo hydrogen production in green algae: water serve as the primary substrate for hydrogen and oxygen production. In: Mitsuii A, Miyachi S et al (eds) Biological solar energy conversion. Academic, New York, pp 150–168Google Scholar
  246. 246.
    Shuzo K, Mitsuii A (1982) Hydrogen metabolism of photosynthetic bacteria and algae. In: Mitsii A, Black CC (eds) CRC handbook of solar resources. 1: basic principle part 1. CRC Press, Boca Raton, pp 299–316Google Scholar
  247. 247.
    Antal TK, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98:114–120PubMedCrossRefGoogle Scholar
  248. 248.
    Gorrell TE, Uffer RL (1977) Fermentative metabolism of pyruvate by Rhodospirillum rubrum. Biochim Biophys Acta 131:533–539Google Scholar
  249. 249.
    Voelskow H, Schon G (1978) Pyruvate fermentation in light grown cells of Rhodospirillum rubrum during adaptation to anaerobic dark condition. Arch Microbiol 48:119–133Google Scholar
  250. 250.
    Hillmer P, Gest H (1977) Hydrogen metabolism in the photosynthetic bacteria Rhodopseudomonas capsulata: production and utilization of hydrogen by resting cells. J Bacteriol 129:732–739PubMedPubMedCentralGoogle Scholar
  251. 251.
    Gogotov IN et al (1974) Hydrogen metabolism and the ability for nitrogen fixation in Phycapsa rosecapeerslcina. Microbiologia 43:5–9Google Scholar
  252. 252.
    Gogotov IN (1978) Relationship in hydrogen metabolism between hydrogenase and nitrogenase in photosynthetic bacteria. Biochemie 60:267–275CrossRefGoogle Scholar
  253. 253.
    King D et al (1977) The mechanism of hydrogen photoevolution in photosynthetic organisms. In: Biological solar energy conversion. Academic, New York, p 69Google Scholar
  254. 254.
    Kitajima M, Butler WL (1976) Microencapsulation of chloroplast particles. Plant Physiol 57:746–755PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Spiller HAE et al (1978) Increase and stabilization of photoproduction of hydrogen in Nostoc muscorum by photosynthetic electron transport inhibition. Z Naturforsch 33:541–547Google Scholar
  256. 256.
    Wall JD, Gest H (1969) Depression of nitrogenase activity in glutamine autotrophs of Rhodopseudomonas capsulate. J Bacteriol 11:137–145Google Scholar
  257. 257.
    Macler BA, Polroy, Bassham JA (1979) Hydrogen formation in nearly Stoichiometric amounts from glucose by Rhodopseudomonas sphaeroides mutant. J Bacteriol 138:446–452PubMedPubMedCentralGoogle Scholar
  258. 258.
    Aruga Y (1965) Ecological study of photosynthesis and matter production of phytoplankton photosynthesis of algae in relation to light intensity and temperature. Bot Mag 78:360–367CrossRefGoogle Scholar
  259. 259.
    Masukawa H et al. (2001) Photobiological hydrogen production and nitrogenase activity in some heterocystous cyanobacteria. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen II. Elsevier, pp 63–66Google Scholar
  260. 260.
    Fedorov AS et al (2001) Production of hydrogen by an Anabaena variabilis mutant in photobioreactor under aerobic outdoor conditions. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen II. Elsevier, Oxford, pp 223–228CrossRefGoogle Scholar
  261. 261.
    Markov SA et al (1997) Hydrogen photoproduction and carbon dioxide uptake by immobilized Anabaena variabilis in a hollow-fiber photobioreactor. Enzyme Microbiol Technol 17:306–310CrossRefGoogle Scholar
  262. 262.
    Lindberg P et al (2004) Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC29133 and its hydrogenase-deficient mutant strain NHM5. Appl Environ Microbiol 70:2137–2145PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Basanta Kumara Behera
    • 1
  • Ajit Varma
    • 1
  1. 1.Amity Institute of Microbial TechnologyAmity University Uttar PradeshNoidaIndia

Personalised recommendations