Advertisement

Microbial Fuel Cell (MFC)

  • Basanta Kumara Behera
  • Ajit Varma
Chapter

Abstract

Unlike biofuels, microbial fuel cells (MFCs) are “plug in and power” devices that convert energy harvested from redox reactions directly into bioelectricity. MFCs can utilize low-grade organic carbons (fuels) in waste streams. The oxidation of the fuel molecules requires biofilm catalysis. In recent years, MFCs have also been used in the electrolysis mode to produce bioproducts in laboratory tests. MFC research has intensified in the past decade, and the maximum MFC power density output has been increased greatly, and many types of waste streams have been tested. MFCs can also be used in wastewater treatment facilities to break down organic matters. They have also been studied for applications as biosensors such as sensors for biological oxygen demand monitoring. Power output and coulombic efficiency are significantly affected by the types of microbe in the anodic chamber of an MFC, configuration of the MFC, and operating conditions. Currently, real-world applications of MFCs are limited because of their low power density level of several thousand mW/m2. Efforts are being made to improve the performance and reduce the construction and operating costs of MFCs. Present strategies on the recent advances in MFC research with emphases on MFC configurations and performances and its possibility to commercialize have been presented with impressive graphic models.

Keywords

Fuel Cell Graphene Oxide Microbial Fuel Cell Anode Chamber Biofuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Timmers RA et al (2010) Long-term performance of a plant microbial fuel cell with Spartina anglica. Appl Microbiol Biotechnol 86:973–981PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Chiao M, Lam KB et al (2003) Micromachined microbial fuel cells. IEEE the sixteenth annual international conference, pp 383–386Google Scholar
  3. 3.
    Ringeisen BR et al (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634PubMedCrossRefGoogle Scholar
  4. 4.
    Rezaei F, Richard TL (2007) Substrate-enhanced microbial fuel cells for improved remote power generation from sediment based systems. Environ Sci Technol 41:4053–4058PubMedCrossRefGoogle Scholar
  5. 5.
    Strik DPBTB et al (2008) Green electricity production with living plants and bacteria in a fuel cell. Int J Energy Res 32:870–876CrossRefGoogle Scholar
  6. 6.
    Strik DPBTB et al (2011) Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol 29:41–49PubMedCrossRefGoogle Scholar
  7. 7.
    Helder M et al (2010) Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresour Technol 101:3541–3547PubMedCrossRefGoogle Scholar
  8. 8.
    Logan Bruce E (2008) Microbial fuel cells. Wiley, Hoboken, NJGoogle Scholar
  9. 9.
    Allen MJ (1972) Cellular electrophysiology. In: Norris JR, Ribbons DW (eds) Methods in microbiology. Academic, New York, NY, pp 247–283Google Scholar
  10. 10.
    Rozendal RA et al (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211PubMedCrossRefGoogle Scholar
  11. 11.
    Min B, Roman OB (2008) Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnol Lett 30:1213–1218PubMedCrossRefGoogle Scholar
  12. 12.
    Park et al (1999) Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181:2403–2410PubMedPubMedCentralGoogle Scholar
  13. 13.
    He Z et al (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39:5262–5267PubMedCrossRefGoogle Scholar
  14. 14.
    Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496CrossRefGoogle Scholar
  15. 15.
    Strik David PBTB et al (2008) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol 81:659–668PubMedCrossRefGoogle Scholar
  16. 16.
    Barlaz Morton A et al (2002) Critical evaluation of factors required to terminate the postclosure monitoring period at solid waste landfills. Environ Sci Tech 36:3457–3464CrossRefGoogle Scholar
  17. 17.
    De Schamphelaire L et al (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol 42:3053–3058PubMedCrossRefGoogle Scholar
  18. 18.
  19. 19.
    Cook B (2002) Introduction to fuel cells and hydrogen technology. Eng Sci Educ J 11(6):205–216CrossRefGoogle Scholar
  20. 20.
    Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Park D, Zeikus J (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292–1297PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Strik DPBTB et al (2008) Green electricity production with living plants and bacteria in a fuel cell. Int J Energy Res 2008:10.1002Google Scholar
  23. 23.
    Roller SD et al (1984) Electron-transfer coupling in microbial fuel cells: 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J Chem Technol Biotechnol 34B:1984Google Scholar
  24. 24.
    Bond DR et al (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485PubMedCrossRefGoogle Scholar
  25. 25.
    Park D, Zeikus J (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348–355PubMedCrossRefGoogle Scholar
  26. 26.
    Rabaey K et al (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25:1531–1535PubMedCrossRefGoogle Scholar
  27. 27.
    Allen RM, Bennetto HP (1993) Microbial fuel cells. Appl Biochem Biotechnol 39(40):27–40CrossRefGoogle Scholar
  28. 28.
    Schroeder U et al (2003) A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew Chem Int Ed 42:2880–2883CrossRefGoogle Scholar
  29. 29.
    Berk RS, Canfield JH (1964) Bioelectrochemical energy conversion. Appl Microbiol 12:10–12PubMedPubMedCentralGoogle Scholar
  30. 30.
    Davis JB, Yarbrough HF (1931) Preliminary experiments on a microbial fuel cell. Science 137:15–616Google Scholar
  31. 31.
    Cohen B (1931) The bacterial culture as an electrical half-cell. J Bacteriol 21:18–19Google Scholar
  32. 32.
    Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc London Ser B 84:260–276CrossRefGoogle Scholar
  33. 33.
    Helder M et al (2012) New plant-growth medium for increased power output of the plant-microbial fuel cell. Bioresour Technol 2012(104):417–423CrossRefGoogle Scholar
  34. 34.
    Chiao M, Lam KB, Lin L (2003) Micromachined microbial fuel cells. IEEE the sixteenth annual international conference, pp 383386Google Scholar
  35. 35.
    Rao JR, Richter GJ (1976) The performance of glucose electrodes and the characteristics of different biofuel cell constructions. Bioelectrochem Bioenerg 3:139–150CrossRefGoogle Scholar
  36. 36.
    Karube I, Matsunaga T (1977) Biochemical cells utilizing immobilized cells of Clostridium butyricum. Biotechnol Bioeng 19:1727–1733CrossRefGoogle Scholar
  37. 37.
    Del Duca MG et al (1963) Developments in industrial microbiology. American Institute of Biological Sciences, 4:81–84Google Scholar
  38. 38.
    Potter MC (1912) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Ser B 84:260–276CrossRefGoogle Scholar
  39. 39.
    Biffinger JC, Ringeisen BR (2008) Engineering microbial fuels cells: recent patents and new directions. Recent Pat Biotechnol 2:150–155PubMedCrossRefGoogle Scholar
  40. 40.
    Galvani L (2008) Eric Weisstein’s world of scientific biography
  41. 41.
    Xing D et al (2008) Electricity generation by Rhodopseudomonas palustris DX-. 1. Environ Sci Technol 42:4146–4151PubMedCrossRefGoogle Scholar
  42. 42.
    Karube IT et al (1976) Continuous hydrogen production by immobilized whole cells of Clostridium butyricum. Biochim Biophys Acta 24:2338–2343Google Scholar
  43. 43.
    Walker AL, Walker CW (2006) Biological fuel cell and an application as a reserve power source. J Power Sources 160:123–129CrossRefGoogle Scholar
  44. 44.
    Reguera G, Nevin KP (2006) Biofilm and nano wire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482PubMedCrossRefGoogle Scholar
  46. 46.
    Nevin KP, Lovley DR (2000) Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl Environ Microbiol 66:2248–2251PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381PubMedCrossRefGoogle Scholar
  48. 48.
    Min B, Cheng S (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39(9):1675–1686PubMedCrossRefGoogle Scholar
  49. 49.
    Qiao Y et al (2008) Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem Commun 11:1290–1292CrossRefGoogle Scholar
  50. 50.
    Bond DR (2005) Evidence for involvement of an electron shuttle in electricity generation by geothrix fermentans. Appl Environ Microbiol 71:2186–2189PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232PubMedCrossRefGoogle Scholar
  52. 52.
    Yi H et al (2009) Selection of a variant of Geobacter Sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24:3498–3503PubMedCrossRefGoogle Scholar
  53. 53.
    Jang JK et al (2004) Construction and operation of a novel mediator-and membraneless microbial fuel cell. Process Biochem 39:1007–1012CrossRefGoogle Scholar
  54. 54.
    Tanaka K et al (1985) Bioelectrochemical fuel-cells operated by the cyanobacterium, Anabaena variabilis. Chem Technol Biotechnol 35B:191–197CrossRefGoogle Scholar
  55. 55.
    Park DH et al (1997) Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds. Biotechnol Tech 11:145–148CrossRefGoogle Scholar
  56. 56.
    Chiao M et al (2003) Micromachined microbial fuel cells. IEEE the sixteenth annual international conference, pp 383–386Google Scholar
  57. 57.
    Allen RM, Bennetto HP (1993) Microbial fuel cells: electricity production from carbohydrates. Appl Biochem Biotechnol 39–40:27–40CrossRefGoogle Scholar
  58. 58.
    Kim HJ et al (2002) A mediatorless microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30:145–152CrossRefGoogle Scholar
  59. 59.
    Ieropoulos IA et al (2005) Comparative study of three types of microbial fuel cell. Enzyme Microb Technol 37:238–245CrossRefGoogle Scholar
  60. 60.
    Tanaka K et al (1988) Effects of light on the electrical output of bioelectrochemical fuel-cells containing Anabaena variabilis M-2: mechanisms of the post-illumination burst. Chem Technol Biotechnol 42:235–240CrossRefGoogle Scholar
  61. 61.
    Kim JR et al (2013) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 23:36–39Google Scholar
  62. 62.
    Park DH et al (2000) Microbial fuel cell. Wiley-Interscience, New YorkGoogle Scholar
  63. 63.
    Bennetto HP (1990) Bugpower—the generation of microbial electricity. In: Scott A (ed) Frontiers of science, Chapter 6. Blackwell, Oxford, pp 60–82Google Scholar
  64. 64.
    Davis JB, Yarbrough HF (1962) Preliminary experiments on a microbial fuel cell. Science 137:615–616PubMedCrossRefGoogle Scholar
  65. 65.
    De Schamphelaire L, Cabezas A et al (2010) Microbial community analysis of anodes from sediment microbial fuel cells powered by rhizodeposits of living rice plants. Appl Environ Microbiol 76:2002–2008PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Tsai HC, Wu C (2009) Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J Power Sources 194:199–205CrossRefGoogle Scholar
  67. 67.
    Dealney GM, Bennetto HP (1984) Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator-substrate combinations. Chem Technol Biotechnol 34B:13–27Google Scholar
  68. 68.
    Thauer RK et al (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedPubMedCentralGoogle Scholar
  69. 69.
    Zhang G et al (2012) Efficient electricity generation from sewage sludge using biocathode microbial fuel cell. Water Res 46:43–52PubMedCrossRefGoogle Scholar
  70. 70.
    Scott K, Cotlarciuc I (2008) Power from marine sediment fuel cells: the influence of anode material. J Appl Electrochem 38:1313–1319CrossRefGoogle Scholar
  71. 71.
    Parot S et al (2008) Forming electro-chemically active biofilms from garden compost under chronoamperometry. Bioresource Technol 99:4809–4816CrossRefGoogle Scholar
  72. 72.
    Yokoyama H, Ohmori H (2006) Treatment of cow-waste slurry by a microbial fuel cell and the properties of the treated slurry as a liquid manure. Anim Sci J 77:634–638CrossRefGoogle Scholar
  73. 73.
    Whitman WB, Coleman DC (1998) Pro-karyotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Bot A, Benites J (2005) The importance of soil organic matter: key to drought-resistant soil and sustained food production. FAO Soil Bulletin No. 80. FAO, RomeGoogle Scholar
  75. 75.
    Rozendal RA et al (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459PubMedCrossRefGoogle Scholar
  76. 76.
    Mirella DL et al (2010) Effect of increasing anode surface area on the performance of single chamber microbial fuel. Chem Eng J 156:40–48CrossRefGoogle Scholar
  77. 77.
    Chae KJ et al (2009) Effect of different substrates on the performance, bacterial diversity in microbial fuel cells. Bioresour Technol 100:3518–3525PubMedCrossRefGoogle Scholar
  78. 78.
    Ishii S et al (2008) Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Biosci Biotechnol Biochem 72:286–294PubMedCrossRefGoogle Scholar
  79. 79.
    Huang DY et al (2011) Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chem Eng J 172:647–653CrossRefGoogle Scholar
  80. 80.
    Lorenzo MD, Scott K (2010) Performance of a single chamber microbial fuel cell. Chem Eng J 156:40–48CrossRefGoogle Scholar
  81. 81.
    Reimers CE, Tender L et al (2001) Harvesting energy from the marine sediment–water interface. Environ Sci Technol 35:192–195PubMedCrossRefGoogle Scholar
  82. 82.
    Tender LM, Reimers CE (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825PubMedCrossRefGoogle Scholar
  83. 83.
    Kaku N, Yonezawa N (2008) Plant/microbe cooperation for electricity generation in a rice paddy field. Appl Microbiol Biotechnol 79:43–49PubMedCrossRefGoogle Scholar
  84. 84.
    Donovan C et al (2008) Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ Sci Technol 42:8591–8596PubMedCrossRefGoogle Scholar
  85. 85.
    Chen Z, Huang Y et al (2012) A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresour Technol 108:55–59PubMedCrossRefGoogle Scholar
  86. 86.
    Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:8943–8947PubMedCrossRefGoogle Scholar
  87. 87.
    Nielsen ME et al (2009) Influence of substrate on electron transfer mechanisms in chambered benthic microbial fuel cells. Environ Sci Technol 43:8671–8677PubMedCrossRefGoogle Scholar
  88. 88.
    Takanezawa K, Nishio K (2010) Factors affecting electric output from rice-paddy microbial fuel cells. Biosci Biotechnol Biochem 74:1271–1273PubMedCrossRefGoogle Scholar
  89. 89.
    Timmers RA, Strik DP (2013) Electricity generation by a novel design tubular plant microbial fuel cell. Biomass Bioenergy 51:60–6710CrossRefGoogle Scholar
  90. 90.
    Pisciotta JM et al (2012) Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl Environ Microbiol 78:5212–5219PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Huggins T et al (2014) Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol 157:114–119PubMedCrossRefGoogle Scholar
  92. 92.
    Lu L et al (2014) Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environ Sci Technol 48:4021–4029PubMedCrossRefGoogle Scholar
  93. 93.
    Song TS et al (2012) Effect of graphite felt and activated carbon fiber felt on performance of freshwater sediment microbial fuel cell. J Chem Technol Biotechnol 87:1436–1440CrossRefGoogle Scholar
  94. 94.
    Karra U et al (2014) Performance evaluation of activated carbon-based electrodes with novel power management system for long-term benthic microbial fuel cells. Int J Hydrog Energy 39:21847–21856CrossRefGoogle Scholar
  95. 95.
    Salas EC, Sun Z (2012) Reduction of graphene oxide via bacterial respiration. ACS Nano 4:4852–4856CrossRefGoogle Scholar
  96. 96.
    Yuan Y et al (2012) Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells. Bioresour Technol 116:453–458PubMedCrossRefGoogle Scholar
  97. 97.
    Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface Sci 204:35–56PubMedCrossRefGoogle Scholar
  98. 98.
    Seabra AB, Paula AL (2014) Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 27:159–168PubMedCrossRefGoogle Scholar
  99. 99.
    Strik DPBTB et al (2008) Green electricity production with living plants and bacteria in a fuel cell. Int J Energy Res 10:1002Google Scholar
  100. 100.
    Helder M et al (2012) The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances. Biotechnol Biofuel 5:70CrossRefGoogle Scholar
  101. 101.
    Pham TH et al (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6:285–292CrossRefGoogle Scholar
  102. 102.
    Tanisho S et al (1989) Microbial fuel cell using Enterobacter aerogenes. Bioelectrochem Bioenergy 21:25–32CrossRefGoogle Scholar
  103. 103.
    Gil GC et al (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334PubMedCrossRefGoogle Scholar
  104. 104.
    Kim N et al (2000) Development of microbial fuel cell using Proteus vulgaris. Bull Kor Chem Soc 21:44–49Google Scholar
  105. 105.
    Sell D et al (1989) Use of an oxygen gas diffusion cathode and a three-dimensional packed bed anode in a bioelectrochemical fuel cell. Appl Microbiol Biotechnol 31:211–213CrossRefGoogle Scholar
  106. 106.
    Lowy DA et al (2006) Harvesting energy from the marine sediment-water interface II—kinetic activity of anode materials. Biosens Bioelectron 21:2058–2063PubMedCrossRefGoogle Scholar
  107. 107.
    Niessen J, Rosenbaum M, Scholz F et al (2004) Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun 6:571–575CrossRefGoogle Scholar
  108. 108.
    Rhoads A et al (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671PubMedCrossRefGoogle Scholar
  109. 109.
    Shantaram A et al (2005) Sensors powered by microbial fuel cells. Environ Sci Technol 39:5037–5042PubMedCrossRefGoogle Scholar
  110. 110.
    Bergel A et al (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7:900–904CrossRefGoogle Scholar
  111. 111.
    Liu H, Ramnarayanan R et al (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285PubMedCrossRefGoogle Scholar
  112. 112.
    Cheng S et al (2006) Power densities using different cathode catalysts (Pt and Co TMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369PubMedCrossRefGoogle Scholar
  113. 113.
    Zhao F et al (2007) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410CrossRefGoogle Scholar
  114. 114.
    You SJ et al (2006) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162:1409–1415CrossRefGoogle Scholar
  115. 115.
    He Z et al (2007) Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosens Bioelectron 22:3252–3255PubMedCrossRefGoogle Scholar
  116. 116.
    Zou YJ et al (2008) A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int J Hydrog Energy 33:4856–4862CrossRefGoogle Scholar
  117. 117.
    Cheng S et al (2006) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8:489–494CrossRefGoogle Scholar
  118. 118.
    Sharma Y, Li B (2010) The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresour Technol 101:1844–1850PubMedCrossRefGoogle Scholar
  119. 119.
    Quick D (2012) Plant-microbial fuel cell generates electricity from living plants http://www.gizmag.com/plant-microbial-fuel-cell/25163/25. Accessed Nov 2012
  120. 120.
    Logan BE (2015) How do microbial fuel cells (MFCs) work? http://www.research.psu.edu/capabilities/documents/MFC_QandA.pdf
  121. 121.
    Oh S, Logan BE (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70:162–169PubMedCrossRefGoogle Scholar
  122. 122.
    Gregoire KP, Becker JG (2012) Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity. Bioresour Technol 119:208–215. doi: 10.1016/j.biortech.2012.05.075
  123. 123.
    Kim JR et al (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68:23–30PubMedCrossRefGoogle Scholar
  124. 124.
    Ghangrekar MM, Shinde VB (2007) Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour Technol 98:2879–2885PubMedCrossRefGoogle Scholar
  125. 125.
    Hyunsoo M et al (2005) Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochem Eng J 27:59–65CrossRefGoogle Scholar
  126. 126.
    Hyunsoo M et al (2006) Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresour Technol 97:621–627CrossRefGoogle Scholar
  127. 127.
    Peter C et al (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Tech 41:7564–7569CrossRefGoogle Scholar
  128. 128.
    Shijie Y et al (2007) A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. J Power Sources 173:172–177CrossRefGoogle Scholar
  129. 129.
    Aelterman P et al (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394PubMedCrossRefGoogle Scholar
  130. 130.
    Korneel R et al (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082CrossRefGoogle Scholar
  131. 131.
    Korneel R et al (2006) Microbial fuel cells for sulfide removal. Environ Sci Tech 40:5218–5224CrossRefGoogle Scholar
  132. 132.
    Peter C et al (2000) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360Google Scholar
  133. 133.
    Bruce L et al (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Tech 41:3341–3346CrossRefGoogle Scholar
  134. 134.
    Seop CI et al (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613CrossRefGoogle Scholar
  135. 135.
    Scott K et al (2007) Application of modified carbon anodes in microbial fuel cells. Process Saf Environ 85:481–488CrossRefGoogle Scholar
  136. 136.
    Zhou M et al (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427–4435CrossRefGoogle Scholar
  137. 137.
    Sharma T et al (2008) Development of carbon nanotubes and nanofluids based microbial fuel cell. Int J Hydrog Energy 33:6749–6754CrossRefGoogle Scholar
  138. 138.
    Hao YE et al (2007) Microbial fuel cell performance with non-Pt cathode catalysts. J Power Sources 171:275–281CrossRefGoogle Scholar
  139. 139.
    You SJ et al (2007) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162:1409e15Google Scholar
  140. 140.
    Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046PubMedCrossRefGoogle Scholar
  141. 141.
    Habermann W, Pommer E (1991) Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 35:128–133CrossRefGoogle Scholar
  142. 142.
    Wang YP et al (2012) A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment. Appl Energy 98:230–235CrossRefGoogle Scholar
  143. 143.
    Mehmood M et al (2009) In situ microbial treatment of landfill leachate using aerated lagoons. Bioresour Technol 100:2741–2744PubMedCrossRefGoogle Scholar
  144. 144.
    Gotvajn AZ et al (2009) Comparison of different treatment strategies for industrial landfill leachate. J Hazard Mater 162:1446–1456PubMedCrossRefGoogle Scholar
  145. 145.
    Min B et al (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968PubMedCrossRefGoogle Scholar
  146. 146.
    Jenna H, Logan BE (2006) Production of electricity from proteins using a microbial fuel cell. Water Environ Res 78:531–537CrossRefGoogle Scholar
  147. 147.
    Royal Society of Chemistry (2003) Fuel cells go mobile www.rsc.org/chemistryworld/Issues/2003/January/mobile.asp

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Basanta Kumara Behera
    • 1
  • Ajit Varma
    • 1
  1. 1.Amity Institute of Microbial TechnologyAmity University Uttar PradeshNoidaIndia

Personalised recommendations