Advertisement

From Algae to Liquid Fuels

  • Basanta Kumara Behera
  • Ajit Varma
Chapter

Abstract

Depletion of natural oil and diesel resources has created an enormous challenge in substituting suitable and economic fuels to meet the demand of locomotive engine and communication systems. This study reviewed the technologies underpinning microalgae-to-biofuel systems, focusing on the biomass production, harvesting, conversion technologies, and the extraction of useful coproducts. The microalgal species mostly used for biodiesel production are presented and their main advantages described in comparison with other available biodiesel feedstocks. The various aspects associated with the design of microalgae production units are described, giving an overview of the current state of development of algae cultivation systems (photobioreactors (PBRs) and open ponds). It also reviewed the synergistic coupling of microalgae propagation with carbon sequestration and wastewater treatment potential for mitigation of environmental impacts associated with energy conversion and utilization. Algal biodiesel can be used by blending with petrodiesel, but it can also be used in pure form. It is a sustainable fuel, as it is available throughout the year and can run any engine. It will satisfy the needs of the future generation to come. The most interesting part of this chapter is about direct production of ethanol from microalgae without any biomass extraction process. This has been nicely explained with well-illustrated figures and photographs to impress readers and make them realize the effective use of microalgae with the use of new technologies being developed by researchers from the field of industrial biotechnology.

Keywords

Supply Chain Algal Biomass Microalgal Biomass Defense Advance Research Project Agency Petroleum Diesel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Parvatker AG (2013) Biodiesel from microalgae—a sustainability analysis using life cycle assessment. Int J Chem Phys Sci 2:43–51Google Scholar
  2. 2.
    Hagg AL (2007) Algae bloom again. Nature 447:520–521CrossRefGoogle Scholar
  3. 3.
    Schneider D (2006) Grow your own? would the wide spread adoption of biomass-derived transportation fuels really help the environment. Am Sci 94:408–409Google Scholar
  4. 4.
    Huang G et al (2010) Biodiesel production from microalgal biotechnology. Appl Energy 87:38–46CrossRefGoogle Scholar
  5. 5.
    Kiran Kumar S (2013) Emission analysis of diesel engine using fish oil and biodiesel blends with isobutanol as an additive. Am J Eng Res 2:322–329Google Scholar
  6. 6.
    Bajpai D, Tyagi VK (2006) Biodiesel: source, production, consumption, properties and its benefits. J Oleo Sci 55:487–502CrossRefGoogle Scholar
  7. 7.
    Bhikuning A (2011) Engine performance and oil analysis of biodiesel from bulk oil. Asian Trans Eng 1:50–54Google Scholar
  8. 8.
    Alam F, Date A et al (2012) Biofuel from algae—is it a viable alternative? Procedia Eng 49:221–227CrossRefGoogle Scholar
  9. 9.
    Sheehan J, Dunahay T (1998) A look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae. NREL/TP-580-24190, National Renewable Energy Laboratory, USAGoogle Scholar
  10. 10.
    Dragone G et al (2010) Third generation biofuels from microalgae. Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, PortugalGoogle Scholar
  11. 11.
    Oncel SS (2013) Microalgae for a macroenergy world. Renew Sustain Energy Rev 26:241–264CrossRefGoogle Scholar
  12. 12.
    Sakthivel R, Elumalai S, Mohommad Arif M (2011) Microalgae lipid research, past, present: a critical review for biodiesel production, in the future. J Exp Sci 2:29–49Google Scholar
  13. 13.
    Bahadur NP, Boocock DGB (1995) Liquid hydrocarbons from catalytic pyrolysis of sewage sludge lipid and canola oil: evaluation of fuel properties. Energy Fuel 9:248–256CrossRefGoogle Scholar
  14. 14.
    Baliga R, Susan E (2010) Sustainable algae biodiesel production in cold climates. Int J Chem Eng 2010. Article ID 102179Google Scholar
  15. 15.
    Patrick E et al (2011) Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res 83:326–338CrossRefGoogle Scholar
  16. 16.
    Sharma KK, Schuhmann H (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553CrossRefGoogle Scholar
  17. 17.
    Jakóbiec J, Wądrzyk M (2010) Microalgae as a potential source for biodiesel production. Agric Eng 6(124)Google Scholar
  18. 18.
    Abdel-Raouf N, Al-Homaidan AA (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lewicki A, Dach J (2013) The experimental photoreactor for microalgae production. Procedia Technol 8:622–627CrossRefGoogle Scholar
  20. 20.
    Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38CrossRefGoogle Scholar
  21. 21.
    Sawaengsak W, Silalertruksa T et al (2014) Life cycle cost of biodiesel production from microalgae in Thailand. Energy Sustain Dev 18:67–74CrossRefGoogle Scholar
  22. 22.
    Andrade JE et al (2011) A review of bio-diesel production processes. Biomass Bioenergy 35:1008–1020CrossRefGoogle Scholar
  23. 23.
    Atabani AE, Silitonga AS (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sustain Energy Rev 16:2070–2093CrossRefGoogle Scholar
  24. 24.
    Kent Hoekman S et al (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16:143–169CrossRefGoogle Scholar
  25. 25.
    Karmakar A, Mukherjee S et al (2010) Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol 101:7201–7210PubMedCrossRefGoogle Scholar
  26. 26.
    Kirrolia A, Bishnoi NR, Singh R (2013) Microalgae as a boon for sustainable energy production and its future research & development aspects. Renew Sustain Energy Rev 20:642–656CrossRefGoogle Scholar
  27. 27.
    Rajvanshi S, Sharma MP (2012) Microalgae: a potential source of biodiesel. J Sustain Bioenergy Syst 2:49–59CrossRefGoogle Scholar
  28. 28.
    Deng X et al (2009) Microalgae: a promising feedstock for biodiesel. Afr J Microbiol Res 3:1008–1014Google Scholar
  29. 29.
    Saharan BS, Sharma D (2013) Towards algal biofuel production: a concept of green bio energy development. Innov Rom Food Biotechnol 12:1–21Google Scholar
  30. 30.
    Kais MI, Chowdhury FI (2011) Biodiesel from microalgae as a solution of third world energy crisis. Bioenergy Technology, World Renewable Energy CongressGoogle Scholar
  31. 31.
    Peer M, Schenk Skye R (2008) Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43CrossRefGoogle Scholar
  32. 32.
    Sushant S et al (2012) Critical review of biofuels from algae for sustainable development. Int J Comput Appl (National Conference on Innovative Paradigms in Engineering & Technology)Google Scholar
  33. 33.
    Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sustain Energy Rev 16:4316–4362CrossRefGoogle Scholar
  34. 34.
    Campbell MN (2008) Biodiesel: algae as a renewable source for liquid fuel. Guelph Eng J 1:2–7Google Scholar
  35. 35.
    Chen Y-H, Chiang T-H, Tang T-C et al (2002) Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel. Fuel 94:270–273CrossRefGoogle Scholar
  36. 36.
    Wang L et al (2012) Prediction of energy microalgae production under flue gas using response surface methodology. Energy Procedia 16:1066–1071CrossRefGoogle Scholar
  37. 37.
    Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047CrossRefGoogle Scholar
  38. 38.
    Ghayal MS, Pandya MT (2013) Microalgae biomass: a renewable source of energy. Energy Procedia 32:242–250CrossRefGoogle Scholar
  39. 39.
    Yanqun Li et al (2008) Biofuels from microalgae. American Chemical Society and American Institute of Chemical EngineersGoogle Scholar
  40. 40.
    United States Environmental Protection Agency (2002) A comprehensive analysis of biodiesel impacts on exhaust emissionsGoogle Scholar
  41. 41.
    Idusuyi N et al (2012) Biodiesel as an alternative energy resource in southwest Nigeria. Int J Sci Technol 2:330–33843Google Scholar
  42. 42.
    Wen D et al (2009) Supercritical fluids technology for clean biofuel production. Prog Nat Sci 19:273–284CrossRefGoogle Scholar
  43. 43.
    Saifullah AZA, Abdul Karim M et al (2014) Microalgae: an alternative source of renewable. Am J Eng Res (AJER) 03:330–338Google Scholar
  44. 44.
    Sakunthala MV et al (2013) Biodiesel—renewable fuel, environmental implications and its handling. J Chem Biol Phys Sci 3:1564–1571Google Scholar
  45. 45.
    Wang B et al (2008) Co2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718PubMedCrossRefGoogle Scholar
  46. 46.
    Li Y et al (2008) Effects of nitrogen sources on cell growth and lipid production of Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636PubMedCrossRefGoogle Scholar
  47. 47.
    Li Y et al (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820PubMedGoogle Scholar
  48. 48.
    Raja R et al (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88PubMedCrossRefGoogle Scholar
  49. 49.
    Guedes et al (2011) Microalgae as sources of high added-value compounds—a brief review of recent work. Biotechnol Prog 27:597–613. doi: 10.1002/btpr.575/abstract, http://onlinelibrary.wiley.com PubMedCrossRefGoogle Scholar
  50. 50.
    Spolaore P et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96PubMedCrossRefGoogle Scholar
  51. 51.
    DOE (2010) National algal biofuels technology roadmap. US Department of energy, office of energy efficiency and renewable energy. Biomass program http://www1.eere.energy.gov/biomass.pdfs/algal_biofuels_roadmap.pdf. Accessed Jan 2011
  52. 52.
    Williams PJ et al (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590CrossRefGoogle Scholar
  53. 53.
    Biomass Program Publication Guide—Bioenergy Technologies Office (2010). www.biomass.energy.gov
  54. 54.
    Rosengarten C, Benzak J (2015) Sapphire energy inks deal to supply ‘Green Crude’ to major oil refiner. http://www.sapphireenergy.com/location/green.crude.farm/
  55. 55.
    New Algae Raceways from MicroBio Engineering (2015). www.AlgaeIndustryMagazine.com
  56. 56.
    Louise Downing (2014) Algae.Tec, Reliance to build clean-fuel facility in India. Bloomberg Business. 21 Jan, 4:19 PM ISTGoogle Scholar
  57. 57.
    Vorrath S (2014) Algae oil test plant launched in South Australia. Renew Economy, 3 Nov 2014Google Scholar
  58. 58.
  59. 59.
    Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321CrossRefGoogle Scholar
  60. 60.
    Borowitzka M (1992) Algal biotechnology products and processes—matching science and economics. J Appl Phycol 4:267–279CrossRefGoogle Scholar
  61. 61.
    Jiménez C, Cossıo BR et al (2003) The feasibility of industrial production of Spirulina (Arthrospira) in southern Spain. Aquaculture 217:179–190CrossRefGoogle Scholar
  62. 62.
    Ugwu CU et al (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028PubMedCrossRefGoogle Scholar
  63. 63.
    Becker EW (1994) Microalgae. Cambridge University Press, Cambridge, www.kaust.edu.sa/House-of-Wisdom Google Scholar
  64. 64.
    Weissman JC, Tillett DM (1992) Design and operation of outdoor microalgae test facility. In: Brown LM, Sprague S (eds). Aquatic species report; NREL/MP-232–4174. National Renewable Energy Laboratory, pp 32–57Google Scholar
  65. 65.
    Yamaguchi K (1997) Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. J Appl Phycol 8:487–502CrossRefGoogle Scholar
  66. 66.
    Lu Y-M, Xiang et al (2011) Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol 23:265–269PubMedCrossRefGoogle Scholar
  67. 67.
    Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Bio-Technol 10:31–41CrossRefGoogle Scholar
  68. 68.
    Gellenbeck KW (2012) Utilization of algal materials for nutraceutical and cosmeceutical applications—what do manufacturers need to know? J Appl Phycol 24:309–31369CrossRefGoogle Scholar
  69. 69.
    Chang J, Lee D, Aisyah R, Yeh K, Chen C (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81. doi: 10.1016/j.biortech.2010.06.159 PubMedCrossRefGoogle Scholar
  70. 70.
    Richmond AS et al (1993) A new tubular reactor for mass production of microalgal outdoors. J appl Phycol 5:327–332CrossRefGoogle Scholar
  71. 71.
    Torzillo G et al (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11:61–74CrossRefGoogle Scholar
  72. 72.
    Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506CrossRefGoogle Scholar
  73. 73.
    Gudin C, Chaumont D (1983) Solar biotechnology study and development of tubular solar receptors for controlled production of photosynthetic cellular biomass. In: Palz W, Pirrwitz D (eds) Proceedings of the workshop and E.C. contractor’s meeting in Capri. D. Reidel Publishing Co., Dordrecht, pp 184–193Google Scholar
  74. 74.
    Pirt SJ et al (1983) A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. J Chem Tech Biotechnol 33:35–58CrossRefGoogle Scholar
  75. 75.
    Chaumont D et al (1991) Dispositif de production intensive et controlle de microorganismes photosynthtiques fragiles. French Patent 9:115–735Google Scholar
  76. 76.
    Muller-Feuga A et al (1992) Dispositif de nettoyage des canalisations d’un photobioreacteur muni de ce dispositif. French Patent 9:212–474Google Scholar
  77. 77.
    Tamiya H et al (1953) Kinetics of growth of Chlorella, with special reference to its dependence on quantity of available light and on temperature. In: Burlew JS (ed) Algal culture from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 204–232Google Scholar
  78. 78.
    Belay A (2002) The potential application of Spirulina (Arthrospira Research Article) as a nutritional and therapeutic supplement in health management. J Am Nutraceut Assoc 5:26–49Google Scholar
  79. 79.
    Cohen E, Arad SM (1989) A closed system for outdoor cultivation of Porphyridium. Biomass 18:59–67CrossRefGoogle Scholar
  80. 80.
    Miyamoto K et al (1998) Vertical tubular reactor for microalgae cultivation. Biotechnol Lett 10:703–708CrossRefGoogle Scholar
  81. 81.
    Tredici MR, Rodolfi L (2004) Reactor for industrial culture of photosynthetic micro-organisms. PCT WO 2004/074423 A2. University of Florence, ItalyGoogle Scholar
  82. 82.
    Pegallapati AK et al (2012) Energy-efficient photobioreactor configuration for algal biomass production. Bioresource Technol 126:266–273CrossRefGoogle Scholar
  83. 83.
    Ogbonna JC, Tanaka H (2000) Light requirement and photosynthetic cell cultivation—development of processes for efficient light utilization in photobioreactors. J Appl Phycol 12:207–218CrossRefGoogle Scholar
  84. 84.
    Wang B (2012) Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 30:904–912PubMedCrossRefGoogle Scholar
  85. 85.
    Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production–a review. Renew Sustain Energy Rev 16:347–2353Google Scholar
  86. 86.
    Tredici MR (2007) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing Ltd, Oxford, pp 178–214Google Scholar
  87. 87.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedCrossRefGoogle Scholar
  88. 88.
    Zhang X et al (2014) Current status and outlook in the application of microalgae in biodiesel production and environmental protection. Front Energy Res. doi: 10.3389/fenrg.2014.00032
  89. 89.
    Lee S et al (1998) Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii. Lett Appl Microbiol 27:14–28CrossRefGoogle Scholar
  90. 90.
    Khan SA et al (2009) Prospects of biodiesel production from microalgae in India. Renew Sustain Energy Rev 13:2361–2372. doi: 10.1016/j.rser.2009.04.005 CrossRefGoogle Scholar
  91. 91.
    Uduman N et al (2010) Dewatering of microalgal cultures: a major bottle to algal based fuels. J Renew Sustain Energy 2:012701–012715CrossRefGoogle Scholar
  92. 92.
    Molina Grima E et al (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515PubMedCrossRefGoogle Scholar
  93. 93.
    Knuckey RM et al (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac Eng 35(3):300–313CrossRefGoogle Scholar
  94. 94.
    Divakaran R, Pillai VNS (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422CrossRefGoogle Scholar
  95. 95.
    Bosma R et al (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153CrossRefGoogle Scholar
  96. 96.
    Carsten O et al (2001) Standardized ultrasound as a new method to induce platelet aggregation: evaluation, influence of lipoproteins and of glycoprotein IIb/IIIa antagonist tirofiban. Eur J Ultrasound 14:157–166CrossRefGoogle Scholar
  97. 97.
    Matis KA et al (1993) Separation of fines by flotation techniques. Sep Technol 3:76–90CrossRefGoogle Scholar
  98. 98.
    Edzwald JK (1993) Algae, bubbles, coagulants, and dissolved air flotation. Water Sci Technol 27:67–81Google Scholar
  99. 99.
    Shelef G et al (1984) Microalgae harvesting and processing: a literature review. Technion Research and Development Foundation Ltd, HaifaCrossRefGoogle Scholar
  100. 100.
    John JM, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12:165–178CrossRefGoogle Scholar
  101. 101.
    Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577CrossRefGoogle Scholar
  102. 102.
    Ahmad A et al (2006) Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. Chem Eng J 118:99–105CrossRefGoogle Scholar
  103. 103.
    Bernhardt H, Clasen J (1991) Flocculation of micro -organisms. J Water SRT-Aqua 40:76–87Google Scholar
  104. 104.
    Papazi A et al (2009) Harvesting Chlorella minutissima using cell coagulants. J Appl Phycol 22:349–355CrossRefGoogle Scholar
  105. 105.
    Valdivia-Lefor P (2011) An optimal harvesting and dewatering system mechanism for microalgae Tarım Makinaları Bilimi Dergisi. J Agric Mach Sci 7:211–215Google Scholar
  106. 106.
    Mohn FH (1980) Experiences and strategies in the recovery of biomass from mass cultures of microalgae. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier, Amsterdam, pp 547–571Google Scholar
  107. 107.
    Richmond A (1986) Microalgae of economic potential. In: Richmond A (ed) CRC handbook of microalgal mass culture. CRC Press, Boca Raton, pp 199–243Google Scholar
  108. 108.
    Heasman M et al (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—a summary. Aquacult Res 31:637–659CrossRefGoogle Scholar
  109. 109.
    Pittman JK et al (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25PubMedCrossRefGoogle Scholar
  110. 110.
    Lees M, Folch J (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  111. 111.
    Benemann JR et al (1980) Development of microalgae harvesting and high rate pond technologies in California. In: Shelef G, Soeder CJ (eds) Algal biomass. Elsevier, Amsterdam, p 457Google Scholar
  112. 112.
    Petrusevski B et al (1995) Tangential flow filtration: a method to concentrate freshwater algae. Water Res 29(5):1419–1424CrossRefGoogle Scholar
  113. 113.
    Renaud SM et al (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147–159 (This work investigates the nutritional value of the 18 recently isolated tropical Australian microalgal species.)CrossRefGoogle Scholar
  114. 114.
    Borowitzka M (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401CrossRefGoogle Scholar
  115. 115.
    MacKay D, Salusbury T (1988) Choosing between centrifugation and crossflow microfiltration. Chem Eng J 477:45–50Google Scholar
  116. 116.
    Ben-Amotz A, Avron M (1987) The biotechnology of mass culturing of Dunaliella for products of commercial interest. In: Cresswell RC, Rees TAV, Shah N (eds) Algal and cyanobacterial technology. Longman, London, pp 90–114Google Scholar
  117. 117.
    Belarbi H et al (2000) A process for high and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26:516–529PubMedCrossRefGoogle Scholar
  118. 118.
    Molina Grima E (1999) Microalgae, mass culture methods. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation, vol 3. Wiley, New York, pp 1753–1769Google Scholar
  119. 119.
    Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131PubMedCrossRefGoogle Scholar
  120. 120.
    Fukuda H et al (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416PubMedCrossRefGoogle Scholar
  121. 121.
    Chen YF (2011) Production of biodiesel from algal biomass: current perspectives and future. Academic, Waltham, MA, p 399Google Scholar
  122. 122.
    Gurr MI et al (2002) Lipid biochemistry: an introduction, 5th edn. Blackwell, Oxford, p 320CrossRefGoogle Scholar
  123. 123.
    Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302:17–45PubMedCrossRefGoogle Scholar
  124. 124.
    Bigogno C et al (2002) Accumulation of arachidonic acid-tichtriacylglycerols in the microalga Parietochloris incisa (trebouxiophyceae, chlorophyta). Phytochemistry 60:135–143PubMedCrossRefGoogle Scholar
  125. 125.
    Alonso DL et al (1998) Acyl lipids of three microalgae. Phytochemistry 47:1473–1481CrossRefGoogle Scholar
  126. 126.
    Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701PubMedCrossRefGoogle Scholar
  127. 127.
    Makewicz A et al (1997) Lipids of Ectocarpus fasciculatus (phaeophyceae). Incorporation of [l-14C] oleate and the role of TAG and MGDG in lipid metabolism. Plant Cell Physiol 38:952–962CrossRefGoogle Scholar
  128. 128.
    Sheehan J et al (1998) A look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae. NREL/TP-580-24190, National Renewable Energy Laboratory, USAGoogle Scholar
  129. 129.
    Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274PubMedCrossRefGoogle Scholar
  130. 130.
    Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Glob Chang 12:573–608CrossRefGoogle Scholar
  131. 131.
    Illman AM et al (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635PubMedCrossRefGoogle Scholar
  132. 132.
    Leathers J et al (2007) Systems analysis and futuristic designs of advanced biofuel factory, concepts. SANDIA Report, SAND2007-6872Google Scholar
  133. 133.
    Teresa M et al (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–223CrossRefGoogle Scholar
  134. 134.
    Ngangkham M, Ratha S (2012) Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures of Chlorella sorokiniana. SpringerPlus 1:1–13CrossRefGoogle Scholar
  135. 135.
    Fuentes-Grünewald C et al (2013) Biomass and lipid production of dinoflagellates and raphidophytes in indoor and outdoor photobioreactors. Mar Biotechnol 15:37–47PubMedCrossRefGoogle Scholar
  136. 136.
    Huang YT, C-P SU (2014) High lipid content and productivity of microalgae cultivating under elevated carbon dioxide. Int J Environ Sci Technol 11:703–710CrossRefGoogle Scholar
  137. 137.
    Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, OxfordGoogle Scholar
  138. 138.
    Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112PubMedCrossRefGoogle Scholar
  139. 139.
    Barclay B (1984) Microalgae culture collection 1984–1985. Microalgal Technology Research Group (MTRG). SERI/SP-231-2486.Google Scholar
  140. 140.
    Chiu SY et al (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838PubMedCrossRefGoogle Scholar
  141. 141.
    De Morais MG, Costa JAV (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Letters 29:1349–1352PubMedCrossRefGoogle Scholar
  142. 142.
    Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manage 50:14–34CrossRefGoogle Scholar
  143. 143.
    Eriksen NT (2008) The technology of microalgal culturing. Biotechnol Lett 30:1525–1536PubMedCrossRefGoogle Scholar
  144. 144.
    Feinberg DA (1984) Fuel options from microalgae with representative chemical compositions. SERI/TR-231-2427Google Scholar
  145. 145.
    Grima EM, Camacho FG, Rubio FC, Chisti Y et al (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368CrossRefGoogle Scholar
  146. 146.
    Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315CrossRefGoogle Scholar
  147. 147.
    Sancho MEM et al (1999) Photoautotrophic consumption of phosphorus by Scenedesmus obliquus in a continuous culture. Influence of light intensity. Process Biochem 34:811–818CrossRefGoogle Scholar
  148. 148.
    Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846PubMedCrossRefGoogle Scholar
  149. 149.
    Michiki H (1995) Biological CO2 fixation and utilization project. Energy Convers Manage 36:701–705CrossRefGoogle Scholar
  150. 150.
    Minowa R et al (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74:1735–1738CrossRefGoogle Scholar
  151. 151.
    Moheimani NR (2005) The culture of Coccolithophorid algae for carbon dioxide bioremediation. PhD thesis. Murdoch UniversityGoogle Scholar
  152. 152.
    Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712CrossRefGoogle Scholar
  153. 153.
    Natrah F, Yoso VFM (2007) Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. J Appl Phycol 19:711–718CrossRefGoogle Scholar
  154. 154.
    Negoro M, Miyamoto K, Miura Y et al (1991) Growth of microalgae in high CO2 gas and effects of SOX and NOX. Appl Biochem Biotechnol 28–29:877–886PubMedCrossRefGoogle Scholar
  155. 155.
    Peng W et al (2001) Pyrolitic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresour Technol 80:1–7PubMedCrossRefGoogle Scholar
  156. 156.
    Poisson L, Pencreac’h G, Ergan F et al (2002) Benefits and current developments of polyunsaturated fatty acids from microalgae lipids. OCL Oleagineux Corps Gras Lipides 9:92–95CrossRefGoogle Scholar
  157. 157.
    Sawayama S et al (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17:33–39CrossRefGoogle Scholar
  158. 158.
    Scragg AH, Carden A, Shales SW et al (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23:67–73CrossRefGoogle Scholar
  159. 159.
    Teixeira CM, Morales ME (2007) Microalga como mate´ ria-prima para a produc¸a˜o debiodiesel. Revista: Biodiesel o Novo combustı´vel do Brasil; 91–6Google Scholar
  160. 160.
    Thomas WH et al (1984) Screening for lipid yielding microalgae: activities for 1983. SERI/STR-231-2207Google Scholar
  161. 161.
    Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194CrossRefGoogle Scholar
  162. 162.
    Pratoomyot J et al (2005) Fatty acids composition of 10 microalgal species. Songklanakarin J Sci Technol 27:1179–1187Google Scholar
  163. 163.
    Hu Q et al (2008) Microalgal triacylglycerols as feedstocks for biofuels production: perspectives and advances. Plant J 54:621–639PubMedCrossRefGoogle Scholar
  164. 164.
    Ötles S, Pire R (2001) Fatty acid composition of Chlorella and Spirulina microalgae species. J AOAC Int 84:1708–1714PubMedGoogle Scholar
  165. 165.
    Callaway JC (2004) Hempseed as a nutritional resource: an overview. Euphytica 140:65–72CrossRefGoogle Scholar
  166. 166.
    Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels—a process view. J Biotechnol 142:64–69PubMedCrossRefGoogle Scholar
  167. 167.
    Kulay LA, Silva GA (2005) Comparative screening LCA of agricultural stages of soy and castor beans. In: 2nd international conference on life cycle management—LCM2005, pp 5–7Google Scholar
  168. 168.
    Mobius BioFuels (2008) What is biodiesel? Mobius Biofuels, LLC. Accessed December at: http://www.mobiusbiofuels.com/biodiesel.htm
  169. 169.
    Nielsen DC (2008) Oilseed productivity under varying water availability. In: Proceedings of 20th annual central plains irrigation conference and exposition, pp 30–33Google Scholar
  170. 170.
    Peterson CL, Hustrulid T (1998) Carbon cycle for rapeseed oil biodiesel fuels. Biomass Bioenergy 14:91–101CrossRefGoogle Scholar
  171. 171.
    Rathbauer J et al (2002) Energetic use of natural vegetable oil in Austria. BLT—Federal Institute of Agricultural Engineering, AustriaGoogle Scholar
  172. 172.
    Reijnders L, Huijbregts MAJ (2008) Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans. J Clean Prod 16:1943–1948CrossRefGoogle Scholar
  173. 173.
    Vollmann J et al (2007) Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind Crop Prod 26:270–277CrossRefGoogle Scholar
  174. 174.
    Zappi M et al (2003) A review of the engineering aspects of the biodiesel industry. MSU E-TECH Laboratory Report ET-03-003Google Scholar
  175. 175.
    Ruan C et al (2006) Kinetics of leaching flavonoids from Pueraria lobata with ethanol. Chin J Chem Eng 14:402–406. doi: 10.1016/S1004-9541(06)60091-8 CrossRefGoogle Scholar
  176. 176.
    Cho SC et al (2012) Enhancement of lipid extraction from marine microalga, Scenedesmus, associated with high-pressure homogenization process. J Biomed Biotechnol:359–432. doi: 10.1155/2012/359432
  177. 177.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. doi: 10.1139/o59-099 PubMedCrossRefGoogle Scholar
  178. 178.
    Hajra AK (1974) On extraction of acyl and alkyl dihydroxyacetone phosphate from incubation mixtures. Lipids 9:502–505. doi: 10.1007/BF02532495 PubMedCrossRefGoogle Scholar
  179. 179.
    Markham BL et al (2006). Radiometric calibration stability of the EO-1 advanced land imager:5 years on-orbit. In: Meynart R, Neeck SP, Shimoda H (eds) Proceedings of SPIE conference 6361 on sensors, systems, and next-generation satellites X,SPIE, vol. 6361, 66770U, SanDiego, CA, pp 1–12Google Scholar
  180. 180.
    Sheng J et al (2011) Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803. Bioresour Technol 102:1697–1703. doi: 10.1016/j.biortech.2010.08.007 PubMedCrossRefGoogle Scholar
  181. 181.
    Jones J et al (2012) Extraction of algal lipids and their analysis by HPLC and mass spectrometry. J Am Oil Chem Soc 89:1371–1381. doi: 10.1007/s00216-011-5376-6 Google Scholar
  182. 182.
    Cooney M et al (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38:291–325. doi: 10.1080/15422110903327919 CrossRefGoogle Scholar
  183. 183.
    Demirbas A, Demirbas MF (2010) Algae energy: Algae as a new source of biodiesel. Green Energy and Technology. SpringerGoogle Scholar
  184. 184.
    Borges ME, Díaz L (2012) Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review. Renew Sustain Energy Rev 16:2839–2849CrossRefGoogle Scholar
  185. 185.
    Leung DYC et al (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095CrossRefGoogle Scholar
  186. 186.
    Lam MK et al (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28:500–518PubMedCrossRefGoogle Scholar
  187. 187.
    Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15CrossRefGoogle Scholar
  188. 188.
    González AF et al (2008) Biocombustibles de segunda generación y biodiesel: una mirada a la contribución de la Universidad de los Andes. Rev Ing 28:70–82CrossRefGoogle Scholar
  189. 189.
    Math MC et al (2010) Technologies for biodiesel production from used cooking oil—a review. Energy Sustain Dev 14:339–345CrossRefGoogle Scholar
  190. 190.
    Vicente G et al (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol 92:297–305PubMedCrossRefGoogle Scholar
  191. 191.
    Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manage 52:163–170CrossRefGoogle Scholar
  192. 192.
    Davis R et al (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531CrossRefGoogle Scholar
  193. 193.
    Nigam PS, Singh A (2010) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci. doi: 10.1016/j.pecs.2010.01.003
  194. 194.
    Liau BC, Shen CT et al (2010) Supercritical fluids extraction and anti-solvent purification of carotenoids from microalgae and associated bioactivity. J Supercrit Fluids 55:169–175CrossRefGoogle Scholar
  195. 195.
    Rösch C et al (2012) Materials flow modeling of nutrient recycling in biodiesel production from microalgae. Bioresour Technol 107:191–199PubMedCrossRefGoogle Scholar
  196. 196.
    Um B-H, Kim Y-S (2009) Review: a chance for Korea to advance algal-biodiesel technology. J Ind Eng Chem 15:1–7CrossRefGoogle Scholar
  197. 197.
    Inglesby AE, Fisher AC (2012) Enhanced methane yields from anaerobic digestion of Arthrospira maxima biomass in an advanced flow-through reactor with an integrated recirculation loop microbial fuel cell. Energy Environ Sci 5:7996–8006CrossRefGoogle Scholar
  198. 198.
    González-Fernández et al (2012) Pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 40:105–111CrossRefGoogle Scholar
  199. 199.
    Du Z et al (2012) Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content. Bioresour Technol 120:13–18PubMedCrossRefGoogle Scholar
  200. 200.
    Heilmann SM et al (2013) Hydrothermal carbonization of microalgae. Biomass Bioenergy 34:875–882, Energies, 63949CrossRefGoogle Scholar
  201. 201.
    Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46:304–309CrossRefGoogle Scholar
  202. 202.
    Miranda JR et al (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol 104:342–348PubMedCrossRefGoogle Scholar
  203. 203.
    Zhou N (2011) Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresour Technol 102:158–161Google Scholar
  204. 204.
    Eshaq FS, Ali MN, Mohd MK (2011) Production of bioethanol from next generation feed-stock alga Spirogyra species. Int J Eng Sci Technol 3:1749–1755Google Scholar
  205. 205.
    Choi SP et al (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101:5330–5336PubMedCrossRefGoogle Scholar
  206. 206.
    Nguyen MT et al (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19:161–166PubMedCrossRefGoogle Scholar
  207. 207.
    Mustaqim D, Ohtaguchi K (1997) A synthesis of bioreactions for the production of ethanol from CO2. Energy 22:353–356CrossRefGoogle Scholar
  208. 208.
    Kim J et al (2012) Bioethanol production from micro-algae, Schizochytrium sp., using hydrothermal treatment and biological conversion. Kor J Chem Eng 29:209–214CrossRefGoogle Scholar
  209. 209.
    Sulfahri SM et al (2011) Ethanol production from algae Spirogyra with fermentation by Zymomonas mobilis and Saccharomyces cerevisiae. J Basic Appl Sci Res 1:589–593Google Scholar
  210. 210.
    Miranda J et al (2012) Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Appl Microbiol Biotechnol 96:555–564PubMedCrossRefGoogle Scholar
  211. 211.
    Lee S (2011) Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Appl Biochem Biotechnol 164:878–888PubMedCrossRefGoogle Scholar
  212. 212.
    Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142CrossRefGoogle Scholar
  213. 213.
    Markou G (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96:631–645PubMedCrossRefGoogle Scholar
  214. 214.
    González-Fernández et al (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30:1655–1661PubMedCrossRefGoogle Scholar
  215. 215.
    Shi X-M et al (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27:312–318PubMedCrossRefGoogle Scholar
  216. 216.
    Sydney EB et al (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101:5892–5896PubMedCrossRefGoogle Scholar
  217. 217.
    Ho SH et al (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198PubMedCrossRefGoogle Scholar
  218. 218.
    Markou G et al (2010) Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira Spirulina platensis: Improvements through phosphorus limitation process. Bioenergy Res 5:915–925CrossRefGoogle Scholar
  219. 219.
    Talebnia F et al (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 2010(101):4744–4753CrossRefGoogle Scholar
  220. 220.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11PubMedCrossRefGoogle Scholar
  221. 221.
    Tasić MB et al (2009) The acid hydrolysis of potato tuber mash in bioethanol production. Biochem Eng J 43:208–211CrossRefGoogle Scholar
  222. 222.
    Ballesteros I et al (2008) Dilute sulfuric acid pretreatment of cardoon for ethanol production. Biochem Eng J 42:84–91CrossRefGoogle Scholar
  223. 223.
    Babadzhanov AS et al (2004) Chemical composition of Spirulina platensis cultivated in Uzbekistan. Chem Nat Compd 40:276–279CrossRefGoogle Scholar
  224. 224.
    Van Eykelenburg C (1977) On the morphology and ultrastructure of the cell wall of Spirulina platensis. Anton Leeuw 43:89–99CrossRefGoogle Scholar
  225. 225.
    Eshaq FS, Ali MN, Mohd MK (2011) Production of bioethanol from next generation feed-stockalga Spirogyra species. Int J Eng Sci Technol 3:1749–1755. http://www.researchgate.net
  226. 226.
    Gong J, You F (2015) Value-added chemicals from microalgae: a sustainable process design using life cycle optimization. Comput Aided Chem Eng 37:1403–1408CrossRefGoogle Scholar
  227. 227.
    Harun R et al (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203Google Scholar
  228. 228.
    Ueno Y et al (1998) Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J Ferment Bioeng 86:38–43CrossRefGoogle Scholar
  229. 229.
    Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23:346–351PubMedCrossRefGoogle Scholar
  230. 230.
    Yanagisawa M, Nakamura K, Ariga O, Nakasaki K (2011) Production of high concentrations of bioethanol from seaweeds that contain easily hydrolysable polysaccharides. Process Biochem 46:2111–2116CrossRefGoogle Scholar
  231. 231.
    Horn SJ et al (2000) Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol 24:51–57CrossRefGoogle Scholar
  232. 232.
    Wi SG et al (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol 100:6658–6660PubMedCrossRefGoogle Scholar
  233. 233.
    Yoon JJ (2010) Production of polysaccharides and corresponding sugars from red seaweed. Adv Mater Res 93–94:463–466CrossRefGoogle Scholar
  234. 234.
    Chisti MY (1980) An unusual hydrocarbon. J Ramsay Soc 27–28:24–26Google Scholar
  235. 235.
    Özçimen D, İnan B (2015) An overview of bioethanol production from algae. In: Biernat K (ed) Biofuels - status and perspective. InTech, Rijeka. ISBN 978-953-51-2177-0Google Scholar
  236. 236.
    Beer L et al (2009) Engineering algae for biohydrogen and biofuel production. Biotechnology 20:264–271Google Scholar
  237. 237.
    Alternative Fossil Fuels for Cleantech Industry (2015) http://www.cleantick.com/portal/video_category/alternative-fossil-fuels
  238. 238.
  239. 239.
    Laurens LML et al (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production. Green Chem 17:1145–1158CrossRefGoogle Scholar
  240. 240.
    Mussatto SI et al (2010) Technological trends, global market, and challenges of bioethanol production. Biotechnol Adv 28:817–830PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Basanta Kumara Behera
    • 1
  • Ajit Varma
    • 1
  1. 1.Amity Institute of Microbial TechnologyAmity University Uttar PradeshNoidaIndia

Personalised recommendations