Skip to main content

Biomethanization

  • Chapter
  • First Online:
Microbial Resources for Sustainable Energy
  • 871 Accesses

Abstract

Update information on biogas production by the breakdown of organic matter in the presence of consortium of microbes, under anaerobic condition, has been well documented. In this connection, global methods of biogas production, enrichment, compression, and storage for energy generation highlighted its potential application in meeting energy needs both in developing and developed countries which have also been described with facts and figures. Special attention has been paid to highlight commercialization of biogas production technology to meet the challenge in solving rural energy crisis under effective management program. In addition, technology on the generation of electricity from biogas to solve localized energy problem has also been narrated with catchy graphic models. Unlike other forms of renewable energy, biogas neither has any geographical limitations nor required technology for producing energy, and it is neither complex nor monopolistic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mang HP et al (2013) Biogas production. Dev Ctries Renew Energy Syst 218–246

    Google Scholar 

  2. Weiland P (2010) Biogas production: current state and perspectives. Microbiol Biotechnol 85:849–860

    Article  CAS  Google Scholar 

  3. Rajendran K et al (2013) Experimental and economical evaluation of a novel biogas digester. Energy Convers Manage 74:183–191

    Article  CAS  Google Scholar 

  4. Buysman E, Mol APJ (2013) Market-based biogas sector development in least developed countries—the case of Cambodia. Energy Policy 63:44–51

    Article  Google Scholar 

  5. Gwavuya SG et al (2012) Household energy economics in rural Ethiopia: a cost-benefit analysis of biogas energy. Renew Energy 48:202–209

    Article  Google Scholar 

  6. Kabir H et al (2013) Factors determinant of biogas adoption in Bangladesh. Renew Sustain Energy Rev 28:881–889

    Article  Google Scholar 

  7. Landi M et al (2013) Cooking with gas: policy lessons from Rwanda’s National Domestic Biogas Program (NDBP). Energy Sustain Dev 17:347–356

    Article  Google Scholar 

  8. Nzila C et al (2012) Multi criteria sustainability assessment of biogas production in Kenya. Appl Energy 93:496–506

    Article  Google Scholar 

  9. Tigabu AD et al (2013) Technology innovation systems and technology diffusion: adoption of bio-digestion in an emerging innovation system in Rwanda. Technol Forecast Soc Change. doi:10.1016/j.techfore.10.011

    Google Scholar 

  10. Laramee J, Davis J (2013) Economic and environmental impacts of domestic bio-digesters: evidence from Arusha, Tanzania. Energy Sustain Dev 17:296–304

    Article  Google Scholar 

  11. Green JM, Sibisi NT (2002) Domestic biogas digesters: a comparative study. In: Domestic use of energy conference, Cape Town, South Africa. www.biogas-tanzania.org/images/uploads/07JMGreenDUE02.pdf

  12. Garfí M et al (2012) Evaluating benefits of low-cost household digesters for rural Andean communities. Renew Sustain Energy Rev 16:575–578

    Article  Google Scholar 

  13. The Bottleneck of Biogas Demand - Scope e-Knowledge Center (2012) http://www.navigantresearch.com/news room/global-biogas-market-to nearly-double-in-size-to33-billion-by-2022

  14. Varma A, Behera B (2003) Green energy. Capital Publishing, New Delhi

    Google Scholar 

  15. Zhang C et al (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sustain Energy Rev 2014(38):383–392

    Article  CAS  Google Scholar 

  16. Jang HM et al (2013) Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production. Bioresour Technol 145:80–89

    Article  CAS  PubMed  Google Scholar 

  17. Kim S et al (2014) A pilot scale two-stage anaerobic digester treating food waste leachate (FWL): performance and microbial structure analysis using pyrosequencing. Process Biochem 49:301–308

    Article  CAS  Google Scholar 

  18. Kampmann K et al (2012) Hydrogenotrophic methanogens dominate in biogas reactors fed with defined substrates. Syst Appl Microbiol 35:404–413

    Article  CAS  PubMed  Google Scholar 

  19. Yagi H et al (2011) RNA analysis of anaerobic sludge during anaerobic biodegradation of cellulose and poly(lactic acid) by RT-PCR–DGGE. Polym Degrad Stab 96:547–552

    Article  CAS  Google Scholar 

  20. Ramsay IR, Pullammanappallil P (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12:247–257

    Article  CAS  PubMed  Google Scholar 

  21. Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1:105–114

    Article  CAS  Google Scholar 

  22. Iea-biogas (2012) http://www.iea-biogas.net. Accessed 25 Mar 2012

  23. Raven RPJM, Gregersen KH (2007) Biogas plants in Denmark: successes and setbacks. Renew Sustain Energy Rev 11:116–132

    Article  Google Scholar 

  24. Parawira W (2009) Biogas technology in sub-Saharan Africa: status, prospects and constraints. Rev Environ Sci Biotechnol 8:187–200

    Article  CAS  Google Scholar 

  25. Dolfing J (1988) Acetogenesis. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 417–442

    Google Scholar 

  26. Madigan MT et al (2009) Brock biology of microorganisms, 12th edn. Pearson Education, Pearson Benjamin Cummings, San Francisco, CA

    Google Scholar 

  27. Angelidaki I, Ellegaard L (2002) Anaerobic digestion in Denmark: past, present and future. In: Anaerobic digestion for sustainability in waste (water) treatment and re-use. Proceedings of 7th FAO/SREN-workshop, 19–22 May 2002, Moscow, Russia, pp 129–138

    Google Scholar 

  28. Bartacek J et al (2007) Developments and constraints in fermentative hydrogen production. Biofuels Bioprod Bioref 1:201–214

    Article  CAS  Google Scholar 

  29. Ljungdahl LG, Eriksson KE (1985) Ecology of microbial cellulose degradation. In: Marshall KC (ed) Advances in microbial ecology, vol 8. Springer, Heidelberg, pp 237–299

    Chapter  Google Scholar 

  30. Jimenez S et al (1990) Influence of lignin on the methanization of lignocellulosic wastes. Biomass 21:43–54

    Article  CAS  Google Scholar 

  31. Batstone DJ et al (2002) Anaerobic digestion model No. 1 (ADM1). IWA Publishing, London

    Google Scholar 

  32. Peters V, Conrad R (1995) Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl Environ Microbiol 61:1673–1676

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cui M et al (2010) Biohydrogen production from poplar leaves pretreated by different methods using anaerobic mixed bacteria. Int J Hydrogen Energy 35:4041–4047

    Article  CAS  Google Scholar 

  34. Hallenbeck PC (2005) Fundamentals of fermentative hydrogen production. Water Sci Technol 52:21–29

    CAS  PubMed  Google Scholar 

  35. Logan BE et al (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36:2530–2535

    Article  CAS  PubMed  Google Scholar 

  36. Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529

    Article  CAS  PubMed  Google Scholar 

  37. Bayr S, Rintala J (2012) Thermophilic anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge. Water Res 46:4713–4720

    Article  CAS  PubMed  Google Scholar 

  38. Ghanimeh S et al (2012) Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresour Technol 17:63–71

    Article  CAS  Google Scholar 

  39. Zhang C et al (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sustain Energy Rev 38:383–392

    Article  CAS  Google Scholar 

  40. Gijzen HJ (2002) Anaerobic digestion for sustainable development: a natural approach. Water Sci Technol 45:321–328

    Google Scholar 

  41. Gijzen HJ (2001) Anaerobes, aerobes and phototrophs: a winning team for wastewater management. Water Sci Technol 44:123–132

    CAS  PubMed  Google Scholar 

  42. Pehlivan E (2009) Biogas production as an environmentally-friendly renewable energy source. In: 9th international multidisciplinary scientific geo conference - SGEM2009, www.sgem.org, SGEM2009 conference proceedings. ISBN 10: 954-91818-1-2. 2:373–382

  43. Green JM, Sibisi MNT (2002) Domestic biogas digesters: a comparative study. In: Proceedings of domestic use of energy conference, Cape Town, South Africa, 2–3:33–38

    Google Scholar 

  44. Hall DO, Moss PA (1983) Biomass for energy in developing countries. Geojournal 7:5–14

    Article  Google Scholar 

  45. Georgakakis D et al (2001) Development and use of an economic evaluation model to assess establishment of local centralized rural biogas plants in Greece. Appl Biochem Biotechnol 109:275–284

    Article  Google Scholar 

  46. Jiang X et al (2011) A review of the biogas industry in China. Energy Policy 39:6073–6081

    Article  Google Scholar 

  47. Thien Thu CT et al (2012) Manure management practices on biogas and non-biogas pig farms in developing countries—Using livestock farms in Vietnam as an example. J Clean Prod 27:64–71

    Article  Google Scholar 

  48. Austin G, Morris G (2012) Biogas production in Africa. In: Bioenergy for sustainable development in Africa. Springer Netherlands, Dordrecht, pp 103–115

    Chapter  Google Scholar 

  49. NDRC (2007) Medium and long-term development plan for renewable energy in China. National Development and Reform Commission, Beijing

    Google Scholar 

  50. Khoiyangbam RS (2011) Environmental implications of biomethanation in conventional biogas plants. Iran J Energy Environ 2:181–187

    Google Scholar 

  51. Sarkar AN (1982) Research and development work in biogas technology. J Sci Ind Res 41:279–291

    CAS  Google Scholar 

  52. Snv World (2012) http://www.snvworld.org. Accessed 23 Mar 2012

  53. Richards B et al (1994) In situ methane enrichment in methanogenic energy crop digesters. Biomass Bioenergy 6(4):275

    Article  CAS  Google Scholar 

  54. Richards B et al (1991) Methods for kinetic analysis of methane fermentation in high solids biomass digesters. Biomass Bioenergy 1:65–66

    Article  CAS  Google Scholar 

  55. State Energy Conservation Office (2009) Biomass energy: manure for fuel. State Energy Conservation Office (Texas). State of Texas, Web. 3 Oct 2009

    Google Scholar 

  56. Webber ME, Amanda DC (2009) Cow power. In: The news: short news items of interest to the scientific community. Sci Children os 46.1:13. Gale. Web. 1 October 2009 in United States

    Google Scholar 

  57. Petersson A, Wellinger A (2009) Biogas upgrading technologies - developments and innovations. IEA Bioenergy Task 37

    Google Scholar 

  58. Amanda DC, Webber ME (2008) Cow power: the energy and emissions benefits of converting manure to biogas. Environ Res Lett 3:034002. doi:10.1088/1748-9326/3/3/034002

    Article  CAS  Google Scholar 

  59. Zezima K (2009) Electricity from what cows leave behind. The New York Times, 23 Sept 2008, natl. ed.: SPG9. Web. 1 Oct 2009

  60. State Energy Conservation Office (2009) Biomass energy: manure for fuel. State Energy Conservation Office (Texas). State of Texas, 23 Apr 2009. Web. 3 Oct 2009

  61. U.S. farm anaerobic digestion systems: a 2010 snapshot. EPA: Washington, DC. www.agmrc.org/commodities…/manure_digester_biogas.cfm/

  62. Wilkinson KG (2011) A comparison of the drivers influencing adoption of on-farm anaerobic digestion in Germany and Australia. Biomass Bioenergy 35:1613–1622

    Article  Google Scholar 

  63. Amigun B, Von Blottnitz H (2009) Capital cost prediction for biogas installations in Africa: Lang factor approach. Environ Prog Sustain Energy 28:134–142

    Article  CAS  Google Scholar 

  64. Africa Biogas (2012) http://africabiogas.org. Accessed 23 Mar 2012

  65. Omer AM, Fadalla Y (2003) Biogas energy technology in Sudan. Renew Energy 28:499–507

    Article  CAS  Google Scholar 

  66. Angelidaki I, Plugge CM, Stams AJM et al (2011) Biomethanation and its potential. Methods Enzymol 494:327–351

    Article  CAS  PubMed  Google Scholar 

  67. Mohan SV (2009) Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: process evaluation towards optimization. Int J Hydrogen Energy 34:7460–7474

    Article  CAS  Google Scholar 

  68. Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  69. Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39

    Article  CAS  Google Scholar 

  70. Levin DB et al (2009) Challenges for biohydrogen production via direct lignocellulose fermentation. Int J Hydrogen Energy 34:7390–7403

    Article  CAS  Google Scholar 

  71. Zhao C et al (2009) High yield simultaneous hydrogen and ethanol production under extreme-thermophilic (70 °C) mixed culture environment. Int J Hydrogen Energy 34:5657–5665

    Article  CAS  Google Scholar 

  72. Akutsu Y et al (2008) Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch. Int J Hydrogen Energy 33:6541–6548

    Article  CAS  Google Scholar 

  73. Wang A, Sun D, Cao G et al (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 12:4137–4143

    Article  CAS  Google Scholar 

  74. Ren N et al (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27:1051–1060

    Article  CAS  PubMed  Google Scholar 

  75. Hallenbeck PC (2009) Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrogen Energy 34:7379–7389

    Article  CAS  Google Scholar 

  76. Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297

    Article  CAS  PubMed  Google Scholar 

  77. Liu J et al (2004) On-line monitoring of a two-stage anaerobic digestion process using a BOD analyzer. J Biotechnol 109:263–275

    Article  CAS  PubMed  Google Scholar 

  78. Ward AJ et al (2008) Optimisation of the anaerobic digestion of agricultural residues. Bioresour Technol 99:7928–7940

    Article  CAS  PubMed  Google Scholar 

  79. Demirer GN, Chen S (2005) Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem 40:3542–3549

    Article  CAS  Google Scholar 

  80. Cooney M et al (2007) Two-phase anaerobic digestion for production of hydrogen-methane mixtures. Bioresour Technol 98:2641–2651

    Article  CAS  PubMed  Google Scholar 

  81. Antonopoulou G et al (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119

    Article  CAS  PubMed  Google Scholar 

  82. Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40:2230–2236

    Article  CAS  PubMed  Google Scholar 

  83. Yang Z et al (2011) Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int J Hydrogen Energy 36:3465–3470

    Article  CAS  Google Scholar 

  84. Li R, Chen S, Li X (2009) Anaerobic co digestion of kitchen waste and cattle manure for methane production. Energy Sources 31:1848–1856

    Article  CAS  Google Scholar 

  85. Md Forhad Ibne Al et al (2013) Development of biogas processing from cow dung, poultry waste, and water hyacinth. Int J Nat Appl Sci 2:13-17

    Google Scholar 

  86. Webber ME, Amanda DC (2008) Cow power. In: The news: short news items of interest to the scientific community. Sci Child os 46.1:13. Gale. Web. 1 Oct 2009 in United States

    Google Scholar 

  87. Chynoweth DP et al (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy 5:95–111

    Article  CAS  Google Scholar 

  88. Owen WF et al (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485–492

    Article  CAS  Google Scholar 

  89. Penn State University, College of Agricultural Sciences (2014) A short history of anaerobic digestion. http://extension.psu.edu/natural-resources/energy/waste-to-energy/resources/biogas/links/history-of-anaerobic-digestion/a-short-history-of-anaerobic-digestion

  90. Jha AK et al (2011) Research advances in dry anaerobic digestion process of solid organic wastes. Afr J Biotechnol 10:14242–14253

    CAS  Google Scholar 

  91. Barth C, Powers T (2008) Agricultural waste characteristics. In: Agricultural waste management field handbook, vol 9. United States Department of Agriculture, Columbia, SC, pp 1–32

    Google Scholar 

  92. Shamsul M et al (2006) Studies on the effect of urine on biogas production. Bangladesh J Sci Ind Res 41:23–32

    Google Scholar 

  93. Nawirska A, Kwaniewska M (2005) Dietary fibre fractions from fruit and vegetable processing waste. Food Chem 91:221–225

    Article  CAS  Google Scholar 

  94. Jenny Gustavsson et al (2011) Global food losses and food waste: extent, causes and prevention. Swedish Institute for Food and Biotechnology (SIK), Gothenburg, Sweden and FAO, Rome

    Google Scholar 

  95. Alvarez JM et al (1990) Performance of digesters treating the organic fraction of municipal solid waste differently sorted. Biol Wastes 33:181–199

    Article  Google Scholar 

  96. Speece RE (1996) Anaerobic biotechnology for industrial wastewater. Archae Press, Nashville, TN

    Google Scholar 

  97. Afifi MM (2011) Enhancement of lactic acid production by utilizing liquid potato wastes. Int J Biol Chem 5:91–102

    Article  CAS  Google Scholar 

  98. Arapoglou D et al (2010) Ethanol production from potato peel waste (PPW). Waste Manag 30:1898–1902

    Article  CAS  PubMed  Google Scholar 

  99. Parawira W et al (2004) Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew Energy 29:1811–1823

    Article  CAS  Google Scholar 

  100. Parawira W et al (2006) Comparative performance of a UASB reactor and an anaerobic packed-bed reactor when treating potato waste leachate. Renew Energy 31:893–903

    Article  CAS  Google Scholar 

  101. Wantanee A, Sureelak R (2004) Laboratory scale experiments for biogas production from cassava tubers. In: The joint international conference on “sustainable energy and environment (SEE)”, 1–3 Dec 2004, Hua Hin, Thailand

    Google Scholar 

  102. Bao B, Chang KC (1994) Carrot pulp chemical composition, color, and water holding capacity as affected by blanching. J Food Sci 59:1159–1161

    Article  CAS  Google Scholar 

  103. Hampannavar US, Shivayogimath CB (2010) Anaerobic treatment of sugar industry wastewater by upflow anaerobic sludge blanket reactor at ambient temperature. Int J Environ Sci 1:631–639

    CAS  Google Scholar 

  104. Saev M et al (2009) Anaerobic co-digestion of wasted tomatoes and cattle dung for biogas production. J Univ Chem Tech Metallurgy 44:55–60

    CAS  Google Scholar 

  105. Trujillo D et al (1993) Energy recovery from wastes: anaerobic digestion of tomato plant mixed with rabbit wastes. Bioresour Technol 45:81–83

    Article  CAS  Google Scholar 

  106. Westerman PW (1985) Available nutrients in livestock waste. In: Agricultural waste utilization and management. Proceedings of the fifth international symposium on agricultural wastes, ASAE, St. Joseph, MI

    Google Scholar 

  107. Benıtez V et al (2011) Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds. Plant Foods Hum Nutr 66:48–57

    Article  PubMed  CAS  Google Scholar 

  108. CPCB (2007) Bio-methanation potential of solid wastes from agro-based industries. Ministry of Environment and Forests Government of India, New Delhi

    Google Scholar 

  109. Das H, Singh SK (2004) Useful byproducts from cellulosic wastes of agriculture and food industry—a critical appraisal. Crit Rev Food Sci Nutr 44:77–89

    Article  PubMed  Google Scholar 

  110. Verrier D et al (1987) Two phase methanation of solid vegetable wastes. Biol Wastes 22:163–177

    Article  CAS  Google Scholar 

  111. Allon E et al (2006) Relationships among growing degree-days, tenderness, other harvest attributes and market value of processing pea (Pisum sativum L.) cultivars grown in Quebec. Can J Plant Sci 86:525–537

    Article  Google Scholar 

  112. Lenihan P et al (2011) Kinetic modelling of dilute acid hydrolysis of lignocellulosic biomass. In: Bernardes MAS (ed) Biofuel production-recent developments and prospects. InTech, Croatia, pp 293–308

    Google Scholar 

  113. Mojtahedi M, Mesgaran MD (2009) Variability in the chemical composition and in situ ruminal degradability of sugar beet pulp produced in North-East Iran. Res J Biol Sci 4:1262–1266

    Article  Google Scholar 

  114. Klingspohn U et al (1993) Utilization of potato pulp from potato starch processing. Process Biochem 28:91–98

    Article  CAS  Google Scholar 

  115. Kavitha P et al (2005) Nutritive value of dried tomato (Lycopersicon esculentum) pomace in cockerels. Anim Nutr Feed Technol 5:107–111

    CAS  Google Scholar 

  116. Mayer F (1998) Potato pulp: properties, physical modification and applications. Polym Degrad Stab 59:231–235

    Article  CAS  Google Scholar 

  117. Kramer A, Kwee WH (1977) Utilization of tomato processing wastes. J Food Sci 42:212–215

    Article  CAS  Google Scholar 

  118. Rizal Y et al (2010) Utilization juice wastes as corn replacement in the broiler diet. WASET 68:1449–1452

    Google Scholar 

  119. Lehto M et al (2005) Wastes and wastewaters from vegetable peeling processes. In: Information and technology for sustainable fruit and vegetable production, the 9th Fruit, nut and vegetable production engineering symposium, 19–22 May 2015, Montpellier

    Google Scholar 

  120. Cecchi F et al (1990) Anaerobic digestion and composting in an integrated strategy for managing vegetable residues from agro-industries or sorted organic fraction of municipal solid wastes. Water Sci Technol 22:33–41

    CAS  Google Scholar 

  121. Colón J et al (2015) Anaerobic digestion of undiluted simulant human excreta for sanitation and energy recovery in less-developed countries. Energy Sustain Dev 29:57–64

    Article  CAS  Google Scholar 

  122. Sharma KD et al (2012) Chemical composition, functional properties and processing of carrot—a review. J Food Sci Technol 49:22–32

    Article  CAS  PubMed  Google Scholar 

  123. Zhao Xihni (1988) Treatment of night soil by biogas digester: China’s rural experience. Appropriate Technology UK. 4 Mar 1988

    Google Scholar 

  124. Among G (1978) New use for liquid whey fermentation, Saccharomyces fragilis, protein food. Food Eng 50:100–106

    Google Scholar 

  125. Andrés Illanes (2011) Whey upgrading by enzyme biocatalysis. Electron J Biotechnol 14(6)

    Google Scholar 

  126. Jeffrey EF, Williston PE, Vermont (2000) Report on-Vermont methane pilot project resource assessment. www.nrbp.org/pdfs/pub21.pdf

  127. Goyal N, Gandhi DN (2009) Comparative analysis of Indian paneer and cheese whey for electrolyte whey drink. World J Dairy Food Sci 4(1):70–72

    Google Scholar 

  128. Methane from algae - Oilgae - Oil from Algae (2015) http://www.oilgae.com/algae/pro/met/met.html#sthash.y1xvd1vH.dpuf

  129. Uziel M et al (1975) Solar energy fixation and conversion with algal-bacterial system. Final project report, National Science Foundation Grant No.G1.39216. University of California, Berkeley, CA

    Google Scholar 

  130. Dohn EH (1980) In: Stafferd SDA, Wheatley BI, Huges DE (eds) Anaerobic digestion. Applied Science Publisher, London, pp 429–448

    Google Scholar 

  131. Sohgen NL (1906) Uber Bakterien, welche Methane ats Kohlenstoff nahrung and energiequelle gebrauchen. Zentralbl Baketeriol Parastink Abt 15:513–517

    Google Scholar 

  132. Bryant MP (1979) Microbial methane production: theoretical aspects. J Anim Sci 48:193–201

    CAS  Google Scholar 

  133. Peilex JP et al (1987) Influence of strong agitation on methanogenesis from H2-CO2. In: Grassi G, Delmon B, Molle JF, Ibetta H (eds) Biomass for energy and industry. Elsevier, Amsterdam

    Google Scholar 

  134. López-López A et al (2008) Estudio comparativo entre un proceso fisicoquímico y uno biologic para tartar agua residual de rastro. Interciencia 33:490–496

    Google Scholar 

  135. Sollo FW (1960) Pond treatment of meat packing wastes. In: Proceeding of the fifteenth annual Purdue industrial waste conference. Purdue University, Purdue, IN

    Google Scholar 

  136. Sáez J, Martínez A (1987) Studio comparativo de distintos coagulantes inorgánicos en el tratamiento de efluents líquidos de matadero. Tecnología del Agua 39:96–100

    Google Scholar 

  137. Couillard D, Gariépy S, Tran FT (1989) Slaughterhouse effluent treatment by thermophilic aerobic process. Water Res 23:573–579

    Article  CAS  Google Scholar 

  138. Hickey R et al (1992) The start-up, operation, monitoring and control of high-rate anaerobic treatment system. Water Sci Technol 24:207–255

    Google Scholar 

  139. Tritt WP, Schuchardt F (1992) Materials flow and possibilities of treating liquid and solid wastes from slaughterhouses in Germany: a review. Bioresour Technol 41:235–245

    Article  CAS  Google Scholar 

  140. Massé DI, Masse L (2000) Characterization of wastewater from hog slaughterhouses in Eastern Canada and evaluation of their in-plant wastewater treatment systems. Can Agric Eng 42:139–146

    Google Scholar 

  141. Duque-Sarango PJ, Chinchay-Rojas LV (2008) CaracterizaciĂłn de residues sĂłlidos, efluentes residuales y evaluaciĂłn de impactos ambientales en tres mataderos de anadoen la provincia de Loja-Ecuador. III Congreso Interamericano de Salud Ambiental Ecuador

    Google Scholar 

  142. Torkian A et al (2003) The effect of organic loading rate on the performance of UASB reactor treating slaughterhouse effluent. Resour Conserv Recycling 40:1–11

    Article  Google Scholar 

  143. Ochieng Otieno FA (1996) Anaerobic digestion of wastewaters with high strength sulphates. Discov Innov 8:143–150

    Google Scholar 

  144. Chen Y et al (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  PubMed  Google Scholar 

  145. Hejnfelt A, Angelidaki I (2009) Anaerobic digestion of slaughterhouse by-products. Biomass Bioenergy 33:1046–1054

    Article  CAS  Google Scholar 

  146. Jiunn-Jyi L et al (1997) Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res 31:1518–1524

    Article  Google Scholar 

  147. Siegrist H et al (2002) Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion. Environ Sci Technol 36:1113–1123

    Article  CAS  PubMed  Google Scholar 

  148. Zinder SH (1884) Microbiology of anaerobic conversion of organic wastes to methane: recent developments. ASM News 50:294–298

    Google Scholar 

  149. Schnürer A, Nordberg Å (2008) Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Sci Technol 57:735–740

    Article  PubMed  CAS  Google Scholar 

  150. Vallin L, Christiansson A, Arnell M et al (2007) Operational experiences of cost effective production in Linköping, Sweden. Biogasmax Integrated Project No. 019795

    Google Scholar 

  151. Microdrive.phosdev.se. SLU- Ethanol Process (2007) http://microdrive.phosdev.se/index.php?

  152. European Community Regulation (2002) (EC) No. 1774/2002 of the European Parliament and of the Council laying down health rules concerning animal by-products not intended for human consumption. Off J L 273:1–95

    Google Scholar 

  153. McCarty PL (1982) One hundred years of anaerobic treatment. In: Hughes DE, Stafford DA, Wheatley BI et al (eds) Anaerobic digestion, 1981: proceedings of the second international symposium on anaerobic digestion. Elsevier Biomedical, Amsterdam, pp 3–22

    Google Scholar 

  154. Habets L, Zumbrgel M (1998) Biologische Aufbereitung eines geschlossenen Wasserkreislaufes mit Schwefelr ̧ckgewinnung in einer neuen Papierfabrik. Wasser-Abwasser Gwf 139(11):733–736

    CAS  Google Scholar 

  155. Webber J (1972) Effects of toxic metals in sewage on crops. Water Pollut Control 71:404–413

    CAS  Google Scholar 

  156. Murphy JD et al (2004) Technical/economic/environmental analysis of biogas utilization. Appl Energy 77:407–427

    Article  CAS  Google Scholar 

  157. Okkerse C, Bekkum HV (1999) From fossil to green. Green Chem 1:107–114

    Article  CAS  Google Scholar 

  158. Pearson J (1989) Major anaerobic plants start up. Pulp Pap Int 31:57–58

    Google Scholar 

  159. Arnon G (1978) New use for liquid whey fermentation, Saccharomyces fragilis, protein food. Food Eng 50:100–106

    Google Scholar 

  160. Kabrick RM, Jewell WJ (1982) Fate of pathogens in thermophilic aerobic sludge digestion. Water Res 16:1051–1060

    Article  Google Scholar 

  161. Lindfield R (1977) Potato cyst eelworm studies AWA. In: Research seminar on pathogen in sewage sludge. Research and Development Technological Note No. 7. Department of the Environment.

    Google Scholar 

  162. Pike EB et al (1983) Inactivation of the parasites of Taenia saginata and Ascaris …. Water Pollut Control 82:501–509

    Google Scholar 

  163. Webber J (1972) Effect of toxic metals on crops. J Water Pollut Control 71:404–413

    CAS  Google Scholar 

  164. Forster CF (1985) Biotechnology and waste water treatment. Cambridge University Press, Cambridge, pp 194–235

    Google Scholar 

  165. Gary D et al (2007) The effect of the microsludge treatment process on anaerobic digestion performance. In: Water Environment Federation’s annual technical exhibition and conference, San Diego, CA, USA, 13–17 Oct 2007

    Google Scholar 

  166. Weemaes M, Verstraete W (1998) Evaluation of current wet sludge disintegration techniques. J Chem Technol Biotechnol 73:83–92

    Article  CAS  Google Scholar 

  167. Cui R, Jahng DJ (2004) Nitrogen control in AO process with recirculation of solubilized excess sludge. Water Res 38:1159–1172

    Article  CAS  PubMed  Google Scholar 

  168. Saktaywin W et al (2005) Advanced sewage treatment process with excess sludge reduction and phosphorus recovery. Water Res 39:902–910

    Article  CAS  PubMed  Google Scholar 

  169. Muller JA (2000) Pre-treatment processes for recycling and reuse of sewage sludge. Water Sci Technol 42:167–174

    CAS  Google Scholar 

  170. Chu L et al (2009) Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production. Water Res 43:1811–1822

    Article  CAS  PubMed  Google Scholar 

  171. Shang M, Hou H (2009) Studies on effect of peracetic acid pretreatment on anaerobic fermentation biogas production from sludge. In: Power and energy engineering conference 2009, Asia-Pacific.

    Google Scholar 

  172. Penaud V et al (1999) Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme Microb Technol 25:258–263

    Article  CAS  Google Scholar 

  173. Sridhar P et al (2010) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem. doi:10.1016/j.ultsonch.2010.02.014

    Google Scholar 

  174. Baier U, Schmidheiny P (1997) Enhanced anaerobic degradation of mechanically disintegrated sludge. Water Sci Technol 36:137–143

    Article  CAS  Google Scholar 

  175. Elliott A, Mahmood T (2007) Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues. Water Res 41:4273–4286

    Article  CAS  PubMed  Google Scholar 

  176. Kunz P et al (1994) Disintegration von Klärschlamm. Tagungsland der 8. Krlsruher Flochungsstage, Universität Karlsruher Flochungstage, Universität Karlsruhe, 139–169

    Google Scholar 

  177. Harrison STL (1991) Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol Adv 9:217–240

    Article  CAS  PubMed  Google Scholar 

  178. Appels L et al (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Energy Combust Sci 34:755–781

    Article  CAS  Google Scholar 

  179. Matthew PJ (1983) Agricultural utilization of sewage sludge in the UK. Water Sci Technol 1:135–149

    Google Scholar 

  180. Swanwick JD et al (1969) A survey on the performance of sewage sludge digestion in Great Britain. J Water Pollut Control 68:639–651

    CAS  Google Scholar 

  181. Ralph EHS (2004) Biomass, bioenergy and biomaterials: future prospects. In: Anonymous (ed) Biomass and agriculture: sustainability, markets and policies. OECD, Paris

    Google Scholar 

  182. Soares Neto TG et al (2009) Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire. J Atmos Environ 43:438–446

    Article  CAS  Google Scholar 

  183. Mital KM (1996) Biogas systems: principles and applications. New Age International, New Delhi

    Google Scholar 

  184. Zeikus JG et al (1980) Microbiology of methanogenesis in thermal volcanic environments. J Bacteriol 143:432–440

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Hobson PN, Shaw BG (1973) The bacterial population of piggery-waste anaerobic digesters. Water Res 8:507–516

    Article  Google Scholar 

  186. Iannotti EL et al (1978) Medium for the enumeration and isolation of bacteria from a swine waste digester. Appl Environ Microbiol 36:555–566

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Mah RA, Sussman C (1967) Microbiology of anaerobic sludge fermentation. I-Enumeration of the non-methanogenic anaerobic bacteria. Appl Microbiol 16:358–361

    Google Scholar 

  188. Labat M, Garcia JL (1986) Study of the development of methanogenic microflora during anaerobic digestion of sugar beet pulp. Appl Microbiol Biotechnol 25:163–168

    Article  CAS  Google Scholar 

  189. Kohl A, Nielsen R (1997) Gas purification, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  190. Libralato G, Ghirardini AV, Avezzu F (2010) Seawater ecotoxicity of monoethanolamine, diethanolamine and triethanolamine. J Hazard Mater 176:535–539

    Article  CAS  PubMed  Google Scholar 

  191. de Hullu J et al (2008) Comparing different biogas upgrading techniques. Eindhoven University of Technology, Eindhoven, http://students.chem.tue.nl/ifp24/BiogasPublic

    Google Scholar 

  192. Tock L et al (2010) Thermochemical production of liquid fuels from biomass: thermo-economic modeling, process design and process integration analysis. Biomass Bioenergy 34:1838–1854

    Article  CAS  Google Scholar 

  193. Burr B, Lyddon L (2008) A comparison of physical solvents for acid gas removal. Gas Processors’ Association Convention, Grapevine, TX

    Google Scholar 

  194. Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. Wiley-VCH, New York

    Google Scholar 

  195. Vandevivere P, de Baere L (2002) Types of anaerobic digesters for solid wastes. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. London, pp 336–367. http://www.adelaide.edu.au/biogas/anaerobic_digestion/pvdv.pdf. Accessed 30 May 2010

  196. Verma S (2002) Anaerobic digestion of biodegradable organics in municipal solid wastes, MSc thesis. Columbia University, New York

    Google Scholar 

  197. Kayhanian M (1999) Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ Technol 20:355–365

    Article  CAS  Google Scholar 

  198. Gregg D, Saddler J (1996) A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Appl Biochem Biotechnol 57–58:711–727

    Article  Google Scholar 

  199. Mok WSL, Antal MJ (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31:1157–1161

    Article  CAS  Google Scholar 

  200. Negro MJ et al (2003) Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Biomass Bioenergy 25:301–308

    Article  CAS  Google Scholar 

  201. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Química Nova 26:863–871

    Article  CAS  Google Scholar 

  202. Gossett JM et al (1982) Heat treatment and anaerobic digestion of refuse. J Environ Eng Div 108:437–454

    CAS  Google Scholar 

  203. Brownell HH et al (1986) Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 28:792–801

    Article  CAS  PubMed  Google Scholar 

  204. Grethlein HE, Converse AO (1991) Common aspects of acid prehydrolysis and steam explosion for pretreating wood. Bioresour Technol 36:77–82

    Article  CAS  Google Scholar 

  205. Lawther JM et al (1996) Effects of extraction conditions and alkali type on yield and composition of wheat straw hemicellulose. J Appl Polym Sci 60:1827–1837

    Article  CAS  Google Scholar 

  206. Overend RP et al (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos Trans R Soc Lond 32:523–536

    Article  Google Scholar 

  207. Chornet E, Overend RP (1988) Phenomenological kinetics and reaction engineering aspects of steam/aqueous treatments. In: Proceedings of the international workshop on steam explosion techniques: fundamentals and industrial applications, Milan, Italy, pp 21–58

    Google Scholar 

  208. Digman MF et al (2010) Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production. Bioresour Technol 101:5305–5314

    Article  CAS  PubMed  Google Scholar 

  209. Li C et al (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906

    Article  CAS  PubMed  Google Scholar 

  210. Harmsen P et al (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Food & Biobased Research, Wageningen

    Google Scholar 

  211. McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC, pp 292–324

    Google Scholar 

  212. Chen Y et al (2007) Potential of agricultural residues and hay for bioethanol production. Appl Biochem Biotechnol 142:276–290

    Article  CAS  PubMed  Google Scholar 

  213. Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–98

    Article  CAS  PubMed  Google Scholar 

  214. Wyman CE, Abelson PH (eds) (1996) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC

    Google Scholar 

  215. Kong F et al (1992) Effects of cell-wall acetate, xylan backbone and lignin on enzymatic hydrolysis of aspen wood. Appl Biochem Biotechnol 34–35:23–35

    Article  Google Scholar 

  216. Song Z et al (2012) Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources 7:3223–3236

    Google Scholar 

  217. Chang V et al (1997) Lime pretreatment of switchgrass. Appl Biochem Biotechnol 63–65:3–19

    Article  PubMed  Google Scholar 

  218. Fukaya et al (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46

    Google Scholar 

  219. Feng L, Zl C (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq Biotechnol Bioeng 38:1308

    Google Scholar 

  220. Zhu S (2008) Use of ionic liquids for the efficient utilization of lignocellulosic materials. J Chem Technol Biotechnol 83:777–779

    Article  CAS  Google Scholar 

  221. Heinze T et al (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 24:520–525

    Article  CAS  Google Scholar 

  222. Dadi AP et al (2007) Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol 1–12:407–421

    Google Scholar 

  223. Wu J et al (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268

    Article  CAS  PubMed  Google Scholar 

  224. Swatloski RP et al (2009) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  225. Stuckey DC (1984) Biogas plant in developing countries: a critical appraisal. Imperial College of Science and Technology, London

    Google Scholar 

  226. Sohm H (1984) Anaerobic wastewater treatment. Adv Biochem Eng Biotechnol 29:83–115

    Google Scholar 

  227. Hang YW (1984) Pre-treatment of crop residues for production. In: Biomass conversion. Bioenergy source materials

    Google Scholar 

  228. Gautam R et al (2009) Biogas as a sustainable energy source in Nepal: present status and future challenges. Renew Sustain Energy Rev 13:248–252

    Article  Google Scholar 

  229. Daxiong Q et al (1990) Diffusion and innovation in the Chinese biogas program. World Dev 18:555–563

    Article  Google Scholar 

  230. Tomar SS (1994) Status of biogas plant in India. Renew Energy 5:829–831

    Article  Google Scholar 

  231. Adeoti O et al (2000) Engineering design and economic evaluation of a family-sized biogas project in Nigeria. Technovation 20:103–108

    Article  Google Scholar 

  232. Akinbami JFK et al (2001) Biogas energy use in Nigeria: current status, future prospects and policy implications. Renew Sustain Energy Rev 5:97–112

    Article  Google Scholar 

  233. Anjan KK (1988) Development and evaluation of a fixed dome plug flow anaerobic digester. Biomass 16:225–235

    Article  Google Scholar 

  234. Singh KJ, Sooch SS (2004) Comparative study of economics of different models of family size biogas plants for state of Punjab, India. Energy Convers Manag 45:1329–1341

    Article  CAS  Google Scholar 

  235. Babaee A, Shayegan J (2011) Effect of organic loading rates (OLR) on production of methane from anaerobic digestion of vegetables waste. Bioenergy Technol 411–417

    Google Scholar 

  236. Sanders FA, Bloodgood DE (1965) The effect of nitrogen to carbon ratio on anaerobic decomposition. J Water Pollut Contamin Fed 37:1741–1749

    CAS  Google Scholar 

  237. Bachmann A et al (1985) Performance characteristics of the anaerobic baffled reactor. Water Res 19:99–106

    Article  CAS  Google Scholar 

  238. Foxon KM et al (2006) Evaluation of the anaerobic baffled reactor for sanitation in dense peri-urban settlements (WRC Report No 1248/01/06). Water Research Commission, Pretoria

  239. Foxon KM et al (2004) The anaerobic baffled reactor (ABR) - an appropriate technology for on-site sanitation. Water SA 30:5

    Google Scholar 

  240. Morel A, Diener S (2006) Greywater management in low and middle-income countries. Review of different treatment systems for households or neighbourhoods (SANDEC Report No. 14/06). Swiss Federal Institute of Aquatic Science (EAWAG), Department of Water and Sanitation in Developing Countries (SANDEC), Duebendorf. http://www.eawag.ch/forschung/sandec/publikationen/ewm/dl/Morel_Diener_Greywater_2006.pdf. Accessed 19 May 2010

  241. Varilin VA et al (1994) Simulation model “Methane” as tool for effective biogas production during anaerobic conversion of complex organic matter. Bioresour Technol 48:1–8

    Article  Google Scholar 

  242. Reddy LV et al (2008) Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Bioresour Technol 99:2242–2249

    Article  CAS  PubMed  Google Scholar 

  243. Zinatizadeh AAL et al (2006) Process modeling and analysis of palm oil mill effluent in an up flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM). Water Res 40:3193–3208

    Article  CAS  PubMed  Google Scholar 

  244. Assi JA, King AJ (2008) Manganese amendment and Pleurotus ostreatus treatment to convert tomato pomace for inclusion in poultry feed. Poult Sci 87:1889–1896

    Article  CAS  PubMed  Google Scholar 

  245. Mills PJ (1978) ADAS seminar report. Anaerobic digestion of farm wastes. MAFF, Coley Park, Reading, pp 43–49

    Google Scholar 

  246. Dohne EH (1980) In: Stafferd DA, Wheatley BI, Hughes DE (eds) Anaerobic digestion. Applied Science, London, pp 429–448

    Google Scholar 

  247. Ross CC, Drake TJ, Walsh JL (1996) Handbook of biogas utilization. 2nd edn. U.S. Department of Energy, Southeastern Regional Biomass Energy Program, July 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumara Behera, B., Varma, A. (2016). Biomethanization. In: Microbial Resources for Sustainable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-33778-4_2

Download citation

Publish with us

Policies and ethics