Skip to main content

Abstract

Zebrafish are an established model organism in developmental and behavioral neuroscience, also recently emerging as an excellent model to study social behavior. Zebrafish are highly social, forming groups (shoals) with structured social relationships, dominance hierarchies and overt territoriality. Moreover, social behavior in zebrafish exhibits considerable plasticity both within- (i.e., as a context-dependent behavior) and between individuals (e.g., sex-differences, personality and coping styles) of the same strain, as well as between strains. This richness and plasticity of social behavior, together with the genetic tools available to visualize and manipulate neural circuits in zebrafish places it in the forefront of studying the neurobiological mechanisms underlying complex social behavior. Here, we review the cognitive abilities involved in social behavior, as well as the different functional classes of social behavior present in zebrafish and their variation. We also highlight recent ground-breaking methodological developments in the field, including automated image-based tracking and classification of behavior coupled with video-animated social stimuli, which collectively foster the development of future high-throughput screens of zebrafish social phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grutter A. Parasite removal rates by the cleaner wrasse Labroides dimidiatus. Mar Ecol Prog Ser. 1996;130:61–70. doi:10.3354/meps130061.

    Article  Google Scholar 

  2. Soares MC, Bshary R, Mendonça R, Grutter AS, Oliveira RF. Arginine vasotocin regulation of interspecific cooperative behaviour in a cleaner fish. PLoS One. 2012;7, e39583. doi:10.1371/journal.pone.0039583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ros AFH, Vullioud P, Bruintjes R, Vallat A, Bshary R. Intra- and interspecific challenges modulate cortisol but not androgen levels in a year-round territorial damselfish. J Exp Biol. 2014;217:1768–74. doi:10.1242/jeb.093666.

    Article  PubMed  Google Scholar 

  4. Engeszer RE, Wang G, Ryan MJ, Parichy DM. Sex-specific perceptual spaces for a vertebrate basal social aggregative behavior. Proc Natl Acad Sci U S A. 2008;105:929–33. doi:10.1073/pnas.0708778105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saverino C, Gerlai R. The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res. 2008;191:77–87. doi:10.1016/j.bbr.2008.03.013.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Snekser JL, Ruhl N, Bauer K, McRobert SP. The influence of sex and phenotype on shoaling decisions in zebrafish. Int J Comp Psychol. 2010;23:70–81.

    Google Scholar 

  7. Engeszer RE, Patterson LB, Rao AA, Parichy DM. Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish. 2007;4:21–40. doi:10.1089/zeb.2006.9997.

    Article  PubMed  Google Scholar 

  8. Parichy DM. Advancing biology through a deeper understanding of zebrafish ecology and evolution. Elife. 2015;4:e05635. doi:10.7554/eLife.05635.

    Article  PubMed Central  Google Scholar 

  9. Bhat A, Greulich MM, Martins EP. Behavioral plasticity in response to environmental manipulation among zebrafish (Danio rerio) populations. PLoS One. 2015;10, e0125097. doi:10.1371/journal.pone.0125097.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Carfagnini AG, Rodd FH, Jeffers KB, Bruce AEE. The effects of habitat complexity on aggression and fecundity in zebrafish (Danio rerio). Environ Biol Fishes. 2009;86:403–9. doi:10.1007/s10641-009-9539-7.

    Article  Google Scholar 

  11. Collymore C, Tolwani RJ, Rasmussen S. The behavioral effects of single housing and environmental enrichment on adult zebrafish (Danio rerio). J Am Assoc Lab Anim Sci. 2015;54:280–5.

    PubMed  PubMed Central  Google Scholar 

  12. Spence R, Gerlach G, Lawrence C, Smith C. The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc. 2008;83:13–34. doi:10.1111/j.1469-185X.2007.00030.x.

    Article  PubMed  Google Scholar 

  13. Gerlai R. Social behavior of zebrafish: from synthetic images to biological mechanisms of shoaling. J Neurosci Methods. 2014;234:59–65. doi:10.1016/j.jneumeth.2014.04.028.

    Article  PubMed  Google Scholar 

  14. Bass SLS, Gerlai R. Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav Brain Res. 2008;186:107–17. doi:10.1016/j.bbr.2007.07.037.

    Article  PubMed  Google Scholar 

  15. Gerlai R, Fernandes Y, Pereira T. Zebrafish (Danio rerio) responds to the animated image of a predator: towards the development of an automated aversive task. Behav Brain Res. 2009;201:318–24. doi:10.1016/j.bbr.2009.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ahmed TS, Gerlai R, Fernandes Y. Effects of animated images of sympatric predators and abstract shapes on fear responses in zebrafish. Behaviour. 2012;149:1125–53. doi:10.1163/1568539X-00003011.

    Article  Google Scholar 

  17. Barcellos LJG, Ritter F, Kreutz LC, Quevedo RM, da Silva LB, Bedin AC, Finco J, Cericato L. Whole-body cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio. Aquaculture. 2007;272:774–8. doi:10.1016/j.aquaculture.2007.09.002.

    Article  CAS  Google Scholar 

  18. Spence R, Ashton R, Smith C. Oviposition decisions are mediated by spawning site quality in wild and domesticated zebrafish, Danio rerio. Behaviour. 2007;144:953–66. doi:10.1163/156853907781492726.

    Article  Google Scholar 

  19. Spence R, Smith C. Mating preference of female zebrafish, Danio rerio, in relation to male dominance. Behav Ecol. 2006. doi:10.1093/beheco/arl016.

  20. Spence ROW, Smith C. Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish, Danio rerio. Anim Behav. 2005;69:1317–23. doi:10.1016/j.anbehav.2004.10.010.

    Article  Google Scholar 

  21. Ariyomo TO, Watt PJ. The effect of variation in boldness and aggressiveness on the reproductive success of zebrafish. Anim Behav. 2012;83:41–6. doi:10.1016/j.anbehav.2011.10.004.

    Article  Google Scholar 

  22. Ruhl N, McRobert SP, Currie WJS. Shoaling preferences and the effects of sex ratio on spawning and aggression in small laboratory populations of zebrafish (Danio rerio). Lab Anim (NY). 2009;38:264–9. doi:10.1038/laban0809-264.

    Article  Google Scholar 

  23. Oliveira RF. Mind the fish: zebrafish as a model in cognitive social neuroscience. Front Neural Circuits. 2013;7:131. doi:10.3389/fncir.2013.00131.

    PubMed  PubMed Central  Google Scholar 

  24. Abril-de-Abreu R, Cruz J, Oliveira RF. Social eavesdropping in zebrafish: tuning of attention to social interactions. Sci Rep. 2015;5:12678. doi:10.1038/srep12678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Engeszer RE, DA Barbiano LA, Ryan MJ, Parichy DM. Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio. Anim Behav. 2007;74:1269–75. doi:10.1016/j.anbehav.2007.01.032.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nat Publ Gr. 2010;11:490–502. doi:10.1038/nrn2851.

    CAS  Google Scholar 

  27. Barba-Escobedo PA, Gould GG. Visual social preferences of lone zebrafish in a novel environment: strain and anxiolytic effects. Genes Brain Behav. 2012;11:366–73. doi:10.1111/j.1601-183X.2012.00770.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gerlach G, Lysiak N. Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim Behav. 2006;71:1371–7. doi:10.1016/j.anbehav.2005.10.010.

    Article  Google Scholar 

  29. Gerlach G, Hodgins-Davis A, Avolio C, Schunter C. Kin recognition in zebrafish: a 24-hour window for olfactory imprinting. Proc Biol Sci. 2008;275:2165–70. doi:10.1098/rspb.2008.0647.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hinz C, Kobbenbring S, Kress S, Sigman L, Müller A, Gerlach G. Kin recognition in zebrafish, Danio rerio, is based on imprinting on olfactory and visual stimuli. Anim Behav. 2013;85:925–30. doi:10.1016/j.anbehav.2013.02.010.

    Article  Google Scholar 

  31. Heyes CM. Social learning in animals: categories and mechanisms. Biol Rev Camb Philos Soc. 1994;69:207–31.

    Article  CAS  PubMed  Google Scholar 

  32. Abril-de-Abreu R, Cruz AS, Oliveira RF. Social dominance modulates eavesdropping in zebrafish. R Soc Open Sci. 2015;2:150220. doi:10.1098/rsos.150220.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Oliveira RF, McGregor PK, Latruffe C. Know thine enemy: fighting fish gather information from observing conspecific interactions. Proc R Soc B Biol Sci. 1998;265:1045–9. doi:10.1098/rspb.1998.0397.

    Article  Google Scholar 

  34. Peake TM. Eavesdropping in communication networks. In: McGregor PK, editor, Animal communication networks. Cambridge: Cambridge University Press; 2005. doi:10.1017/CBO9780511610363.

  35. von Frisch K. Zur Psychologie des Fisch-Schwarmes. Naturwissenschaften. 1938;26:601–6. doi:10.1007/BF01590598.

    Article  Google Scholar 

  36. Speedie N, Gerlai R. Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res. 2008;188:168–77. doi:10.1016/j.bbr.2007.10.031.

    Article  CAS  PubMed  Google Scholar 

  37. Parra KV, Adrian JC, Gerlai R. The synthetic substance hypoxanthine 3-N-oxide elicits alarm reactions in zebrafish (Danio rerio). Behav Brain Res. 2009;205:336–41. doi:10.1016/j.bbr.2009.06.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mathuru AS, Kibat C, Cheong WF, Shui G, Wenk MR, Friedrich RW, Jesuthasan S. Chondroitin fragments are odorants that trigger fear behavior in fish. Curr Biol. 2012;22:538–44. doi:10.1016/j.cub.2012.01.061.

    Article  CAS  PubMed  Google Scholar 

  39. Suboski MD, Bain S, Carty AE, McQuoid LM, Seelen MI, Seifert M. Alarm reaction in acquisition and social transmission of simulated-predator recognition by zebra danio fish (Brachydanio rerio). Comp Biochem Physiol A Mol Integr Physiol. 1990;104:101–12.

    Google Scholar 

  40. Hall D, Suboski MD. Visual and olfactory stimuli in learned release of alarm reactions by zebra danio fish (Brachydanio rerio). Neurobiol Learn Mem. 1995;63:229–40. doi:10.1006/nlme.1995.1027.

    Article  CAS  PubMed  Google Scholar 

  41. Gleason PE, Weber PG, Weber SP. Effect of group size on avoidance learning in zebra fish, Brachydanio rerio (Pisces: Cyprinidae). Anim Learn Behav. 1977;5:213–6. doi:10.3758/BF03214081.

    Article  Google Scholar 

  42. Lindeyer CM, Reader SM. Social learning of escape routes in zebrafish and the stability of behavioural traditions. Anim Behav. 2010;79:827–34. doi:10.1016/j.anbehav.2009.12.024.

    Article  Google Scholar 

  43. Zala SM, Määttänen I, Penn DJ. Different social-learning strategies in wild and domesticated zebra fish, Danio rerio. Anim Behav. 2012;83:1519–25. doi:10.1016/j.anbehav.2012.03.029.

    Article  Google Scholar 

  44. Zala SM, Määttänen I. Social learning of an associative foraging task in zebrafish. Naturwissenschaften. 2013;100:469–72. doi:10.1007/s00114-013-1017-6.

    Article  CAS  PubMed  Google Scholar 

  45. Parker MO, Gaviria J, Haigh A, Millington ME, Verity J. Discrimination reversal and attentional sets in zebrafish (Danio rerio). Behav Brain Res. 2014;232:264–8. doi:10.1016/j.bbr.2012.04.035.Discrimination.

    Article  Google Scholar 

  46. Buske C, Gerlai R. Shoaling develops with age in zebra fish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:1409–15. doi:10.1016/j.pnpbp.2010.09.003.

    Article  PubMed  Google Scholar 

  47. Valente A, Huang K-H, Portugues R, Engert F. Ontogeny of classical and operant learning behaviors in zebrafish. Learn Mem. 2012;19:170–7. doi:10.1101/lm.025668.112.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hinz FI, Aizenberg M, Tushev G, Schuman EM. Protein synthesis-dependent associative long-term memory in larval zebrafish. J Neurosci. 2013;33:15382–7. doi:10.1523/JNEUROSCI.0560-13.2013.

    Article  CAS  PubMed  Google Scholar 

  49. Miller NY, Gerlai R. Shoaling in zebrafish: what we don’t know. Rev Neurosci. 2011;22:17–25. doi:10.1515/RNS.2011.004.

    Article  PubMed  Google Scholar 

  50. Wright D, Krause J. Repeated measures of shoaling tendency in zebrafish (Danio rerio) and other small teleost fishes. Nat Protoc. 2006;1:1828–31. doi:10.1038/nprot.2006.287.

    Article  CAS  PubMed  Google Scholar 

  51. Braida D, Donzelli A, Martucci R, Capurro V, Busnelli M, Chini B, Sala M. Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish. Psychopharmacology (Berl). 2012;220:319–30. doi:10.1007/s00213-011-2482-2.

    Article  CAS  Google Scholar 

  52. Qin M, Wong A, Seguin D, Gerlai R. Induction of social behavior in zebrafish: live versus computer animated fish as stimuli. Zebrafish. 2014;11:185–97. doi:10.1089/zeb.2013.0969.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wright D, Nakamichi R, Krause J, Butlin RK. QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behav Genet. 2006;36. doi:10.1007/s10519-005-9029-4.

  54. Scerbina T, Chatterjee D, Gerlai R. Dopamine receptor antagonism disrupts social preference in zebrafish: a strain comparison study. Amino Acids. 2012;43:2059–72. doi:10.1007/s00726-012-1284-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fernandes Y, Gerlai R. Long-term behavioral changes in response to early developmental exposure to ethanol in zebrafish. Alcohol Clin Exp Res. 2009;33:601–9. doi:10.1111/j.1530-0277.2008.00874.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gerlai R. Zebra fish: an uncharted behavior genetic model. Behav Genet. 2003;33:461–8.

    Article  PubMed  Google Scholar 

  57. Ladu F, Mwaffo V, Li J, Macrì S, Porfiri M. Acute caffeine administration affects zebrafish response to a robotic stimulus. Behav Brain Res. 2015;289:48–54. doi:10.1016/j.bbr.2015.04.020.

    Article  CAS  PubMed  Google Scholar 

  58. Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, Wong K, Elegante M, Elkhayat S, Tan J, et al. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res. 2010;214:277–84. doi:10.1016/j.bbr.2010.05.039.

    Article  CAS  PubMed  Google Scholar 

  59. Fernandes Y, Rampersad M, Jia J, Gerlai R. The effect of the number and size of animated conspecific images on shoaling responses of zebrafish. Pharmacol Biochem Behav. 2015;139(Pt B):94–102. doi:10.1016/j.pbb.2015.01.011.

    Article  CAS  PubMed  Google Scholar 

  60. Dreosti E, Lopes G, Kampff AR, Wilson SW. Development of social behavior in young zebrafish. Front Neural Circuits. 2015;9:39. doi:10.3389/fncir.2015.00039.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ruhl N, McRobert SP. The effect of sex and shoal size on shoaling behaviour in Danio rerio. J Fish Biol. 2005;67:1318–26. doi:10.1111/j.0022-1112.2005.00826.x.

    Article  Google Scholar 

  62. Engeszer RE, Ryan MJ, Parichy DM. Learned social preference in zebrafish. Curr Biol. 2004;14:881–4. doi:10.1016/j.

    Google Scholar 

  63. Al-imari L, Gerlai R. Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio). Behav Brain Res. 2008;189:216–9. doi:10.1016/j.bbr.2007.12.007.

    Article  PubMed  Google Scholar 

  64. Saif M, Chatterjee D, Buske C, Gerlai R. Sight of conspecific images induces changes in neurochemistry in zebrafish. Behav Brain Res. 2013;243:294–9. doi:10.1016/j.bbr.2013.01.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Spinello C, Macrì S, Porfiri M. Acute ethanol administration affects zebrafish preference for a biologically inspired robot. Alcohol. 2013;47:391–8. doi:10.1016/j.alcohol.2013.04.003.

    Article  CAS  PubMed  Google Scholar 

  66. Pitcher TJ. Functions of shoaling behaviour in teleost. In: Pitcher TJ, editor, The Behaviour of Teleost Fishes, 2nd edition, Springer US, 1993. doi:10.1007/978-1-4684-8261-4_12.

  67. Miller N, Gerlai R. Quantification of shoaling behaviour in zebrafish (Danio rerio). Behav Brain Res. 2007;184:157–66. doi:10.1016/j.bbr.2007.07.007.

    Article  PubMed  Google Scholar 

  68. Pham M, Raymond J, Hester J, Kyzar E, Gaikwad S, Bruce I, Fryar C, Chanin S, Enriquez J, Bagawandoss S, Zapolsky I, Green J, Michael Stewart A, Robison B, Kalueff AV. Assessing Social Behavior Phenotypes in Adult Zebrafish: Shoaling, Social preference and Mirror Biting tests. In: Klueff AV, Stewart AM, editors. Zebrafish Protocols for Neurobehavioral Research, 2012, Vol.66, p 231-46, New York: Humana Press. doi:10.1007/978-1-61779-597-8.

  69. Green J, Collins C, Kyzar EJ, Pham M, Roth A, Gaikwad S, Cachat J, Stewart AM, Landsman S, Grieco F, et al. Automated high-throughput neurophenotyping of zebrafish social behavior. J Neurosci Methods. 2012;210:266–71. doi:10.1016/j.jneumeth.2012.07.017.

    Article  PubMed  Google Scholar 

  70. Echevarria DJ, Hammack CM, Pratt DW, Hosemann JD. A novel behavioral test battery to assess global drug effects using the zebrafish. Int J Comp Psychol. 2008;21:19–34.

    Google Scholar 

  71. Gebauer DL, Pagnussat N, Piato ÂL, Schaefer IC, Bonan CD, Lara DR. Pharmacology, biochemistry and behavior effects of anxiolytics in zebra fish: similarities and differences between benzodiazepines, buspirone and ethanol. Pharmacol Biochem Behav. 2011;99:480–6. doi:10.1016/j.pbb.2011.04.021.

    Article  CAS  PubMed  Google Scholar 

  72. Pérez-Escudero A, Vicente-Page J, Hinz RC, Arganda S, de Polavieja GG. idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat Methods. 2014;11:743–8. doi:10.1038/nmeth.2994.

    Article  PubMed  CAS  Google Scholar 

  73. Buske C, Gerlai R. Maturation of shoaling behavior is accompanied by changes in the dopaminergic and serotoninergic systems in zebrafish. Dev Psychobiol. 2012;54:28–35. doi:10.1002/dev.20571.

    Article  CAS  PubMed  Google Scholar 

  74. Rhee SH, Waldman ID. Genetic and environmental influences on antisocial behavior: a meta-analysis of twin and adoption studies. Psychol Bull. 2002;128:490–529.

    Article  PubMed  Google Scholar 

  75. Jones LJ, Norton WHJ. Using zebrafish to uncover the genetic and neural basis of aggression, a frequent comorbid symptom of psychiatric disorders. Behav Brain Res. 2015;276:171–80. doi:10.1016/j.bbr.2014.05.055.

    Article  PubMed  Google Scholar 

  76. Stewart AM, Ullmann JFP, Norton WHJ, Parker MO, Brennan CH, Gerlai R, Kalueff AV. Molecular psychiatry of zebrafish. Mol Psychiatry. 2015;20:2–17. doi:10.1038/mp.2014.128.

    Article  CAS  PubMed  Google Scholar 

  77. Filby AL, Paull GC, Hickmore TF, Tyler CR. Unravelling the neurophysiological basis of aggression in a fish model. BMC Genomics. 2010;11:498. doi:10.1186/1471-2164-11-498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Norton W, Bally-Cuif L. Adult zebrafish as a model organism for behavioural genetics. BMC Neurosci. 2010;11:90. doi:10.1186/1471-2202-11-90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ricci L, Summers CH, Larson ET, O’Malley D, Melloni RH. Development of aggressive phenotypes in zebrafish: interactions of age, experience and social status. Anim Behav. 2013;86:245–52. doi:10.1016/j.anbehav.2013.04.011.

    Article  Google Scholar 

  80. Weber DN, Ghorai JK. Experimental design affects social behavior outcomes in adult zebrafish developmentally exposed to lead. Zebrafish. 2013;10:294–302. doi:10.1089/zeb.2012.0780.

    Article  CAS  PubMed  Google Scholar 

  81. Weber DN, Hoffmann RG, Hoke ES, Tanguay RL. Bisphenol A exposure during early development induces sex-specific changes in adult zebrafish social interactions. J Toxicol Environ Health A. 2015;78:50–66. doi:10.1080/15287394.2015.958419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dahlbom SJ, Lagman D, Lundstedt-Enkel K, Sundström LF, Winberg S. Boldness predicts social status in zebrafish (Danio rerio). PLoS One. 2011;6, e23565. doi:10.1371/journal.pone.0023565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Howard RD, Rohrer K, Liu Y, Muir WM. Mate competition and evolutionary outcomes in genetically modified zebrafish (Danio rerio). Evolution. 2015;69:1143–57. doi:10.1111/evo.12662.

    Article  PubMed  Google Scholar 

  84. Paull GC, Filby AL, Giddins HG, Coe TS, Hamilton PB, Tyler CR. Dominance hierarchies in zebrafish (Danio rerio) and their relationship with reproductive success. Zebrafish. 2010;7:109–17. doi:10.1089/zeb.2009.0618.

    Article  CAS  PubMed  Google Scholar 

  85. Basquill SP, Grant JW. An increase in habitat complexity reduces aggression and monopolization of food by zebra fish (Danio rerio). Can J Zool. 1998;76:770–2. doi:10.1139/z97-232.

    Article  Google Scholar 

  86. Oliveira RF, Silva JF, Simões JM. Fighting zebrafish: characterization of aggressive behavior and winner-loser effects. Zebrafish. 2011;8:73–81. doi:10.1089/zeb.2011.0690.

    Article  PubMed  Google Scholar 

  87. Way GP, Ruhl N, Snekser JL, Kiesel AL, McRobert SP. A comparison of methodologies to test aggression in zebrafish. Zebrafish. 2015;12:144–51. doi:10.1089/zeb.2014.1025.

    Article  PubMed  Google Scholar 

  88. Toms CN, Echevarria DJ. Back to basics: searching for a comprehensive framework for exploring individual differences in zebrafish (Danio rerio) behavior. Zebrafish. 2014;11:325–40. doi:10.1089/zeb.2013.0952.

    Article  PubMed  Google Scholar 

  89. Gerlai R, Lahav M, Guo S, Rosenthal A. Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav. 2000;67:773–82.

    Article  CAS  PubMed  Google Scholar 

  90. Way GP, Kiesel AL, Ruhl N, Snekser JL, McRobert SP. Sex differences in a shoaling-boldness behavioral syndrome, but no link with aggression. Behav Processes. 2015;113:7–12. doi:10.1016/j.beproc.2014.12.014.

    Article  PubMed  Google Scholar 

  91. Ariyomo TO, Carter M, Watt PJ. Heritability of boldness and aggressiveness in the zebrafish. Behav Genet. 2013;43:161–7. doi:10.1007/s10519-013-9585-y.

    Article  PubMed  Google Scholar 

  92. McRobert SP, Kiesel AL, Snekser JL, Ruhl N. Behavioural syndromes and shoaling: connections between aggression, boldness and social behaviour in three different Danios. Behaviour. 2012;149:1155–75. doi:10.1163/1568539X-00003015.

    Article  Google Scholar 

  93. Norton WHJ, Stumpenhorst K, Faus-Kessler T, Folchert A, Rohner N, Harris MP, Callebert J, Bally-Cuif L. Modulation of Fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome. J Neurosci. 2011;31:13796–807. doi:10.1523/JNEUROSCI.2892-11.2011.

    Article  CAS  PubMed  Google Scholar 

  94. Martins EP, Bhat A. Population-level personalities in zebrafish: aggression-boldness across but not within populations. Behav Ecol. 2014;25:368–73. doi:10.1093/beheco/aru007.

    Article  Google Scholar 

  95. Norton WHJ, Bally-Cuif L. Unravelling the proximate causes of the aggression-boldness behavioural syndrome in zebrafish. Behaviour. 2012;149:1063–79. doi:10.1163/1568539X-00003012.

    Article  Google Scholar 

  96. Dahlbom SJ, Backström T, Lundstedt-Enkel K, Winberg S. Aggression and monoamines: effects of sex and social rank in zebrafish (Danio rerio). Behav Brain Res. 2012;228:333–8. doi:10.1016/j.bbr.2011.12.011.

    Article  CAS  PubMed  Google Scholar 

  97. Gronquist D, Berges JA. Effects of aquarium-related stressors on the zebrafish: a comparison of behavioral, physiological, and biochemical indicators. J Aquat Anim Health. 2013;25:53–65. doi:10.1080/08997659.2012.747450.

    Article  CAS  PubMed  Google Scholar 

  98. Hamilton IM, Dill LM. Monopolization of food by zebrafish (Danio rerio) increases in risky habitats. Can J Zool. 2002;80:2164–9. doi:10.1139/z02-199.

    Article  Google Scholar 

  99. Ariyomo TO, Watt PJ. Effect of hunger level and time of day on boldness and aggression in the zebrafish Danio rerio. J Fish Biol. 2015;86:1852–9. doi:10.1111/jfb.12674.

    Article  CAS  PubMed  Google Scholar 

  100. Moretz JA, Martins EP, Robison BD. Behavioral syndromes and the evolution of correlated behavior in zebrafish. Behav Ecol. 2007;18:556–62. doi:10.1093/beheco/arm011.

    Article  Google Scholar 

  101. Rey S, Digka N, MacKenzie S. Animal personality relates to thermal preference in wild-type zebrafish, Danio rerio. Zebrafish. 2015;12:243–9. doi:10.1089/zeb.2014.1076.

    Article  PubMed  Google Scholar 

  102. Darrow KO, Harris WA. Characterization and development of courtship in zebrafish, Danio rerio. Zebrafish. 2004;1:40–5. doi:10.1089/154585404774101662.

    Article  PubMed  Google Scholar 

  103. Owen MA, Rohrer K, Howard RD. Mate choice for a novel male phenotype in zebrafish, Danio rerio. Anim Behav. 2012;83:811–20. doi:10.1016/j.anbehav.2011.12.029.

    Article  Google Scholar 

  104. Gumm JM, Snekser JL, Iovine MK. Fin-mutant female zebrafish (Danio rerio) exhibit differences in association preferences for male fin length. Behav Processes. 2009;80:35–8. doi:10.1016/j.beproc.2008.09.004.

    Article  PubMed  Google Scholar 

  105. Turnell ER, Mann KD, Rosenthal GG, Gerlach G. Mate choice in zebrafish (Danio rerio) analyzed with video-stimulus techniques. Biol Bull. 2003;205:225–6.

    Google Scholar 

  106. Skinner AMJ, Watt PJ. Strategic egg allocation in the zebra fish, Danio rerio. Behav Ecol. 2007;18:905–9. doi:10.1093/beheco/arm059.

  107. Pyron M. Female preferences and male-male interactions in zebrafish (Danio rerio). Can J Zool. 2003;81(1):122–5. doi:10.1139/z02-229.

    Google Scholar 

  108. Kitevski B, Pyron M. Female zebrafish (Danio rerio) do not prefer mutant longfin males. J Freshw Ecol. 2003;18:501–2. doi:10.1080/02705060.2003.9663988.

    Article  Google Scholar 

  109. Hutter S, Zala SM, Penn DJ. Sex recognition in zebrafish (Danio rerio). J Ethol. 2010;29:55–61. doi:10.1007/s10164-010-0221-5.

    Article  Google Scholar 

  110. van den Hurk R, Lambert JGD. Ovarian steroid glucuronides function as sex pheromones for male zebrafish, Brachydanio rerio. Can J Zool. 1983;61:2381–7. doi:10.1139/z83-317.

    Article  Google Scholar 

  111. Coe TS, Hamilton PB, Griffiths AM, Hodgson DJ, Wahab MA, Tyler CR. Genetic variation in strains of zebrafish (Danio rerio) and the implications for ecotoxicology studies. Ecotoxicology. 2009;18:144–50. doi:10.1007/s10646-008-0267-0.

    Article  CAS  PubMed  Google Scholar 

  112. Whiteley AR, Bhat A, Martins EP, Mayden RL, Arunachalam M, Uusi-Heikkilä S, Ahmed ATA, Shrestha J, Clark M, Stemple D, et al. Population genomics of wild and laboratory zebrafish (Danio rerio). Mol Ecol. 2011;20:4259–76. doi:10.1111/j.1365-294X.2011.05272.x.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wright D, Rimmer LB, Pritchard VL, Krause J, Butlin RK. Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio). Naturwissenschaften. 2003; 374–7. doi:10.1007/s00114-003-0443-2.

  114. Oswald M, Robison BD. Strain-specific alteration of zebrafish feeding behavior in response to aversive stimuli. Can J Zool. 2008;86:1085–94. doi:10.1139/Z08-085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Drew RE, Settles ML, Churchill EJ, Williams SM, Balli S, Robison BD. Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio). BMC Genomics. 2012;13:323. doi:10.1186/1471-2164-13-323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res. 2009;205:38–44. doi:10.1016/j.bbr.2009.06.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mahabir S, Chatterjee D, Buske C, Gerlai R. Maturation of shoaling in two zebrafish strains: a behavioral and neurochemical analysis. Behav Brain Res. 2013;247:1–8. doi:10.1016/j.bbr.2013.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sertori R, Trengove M, Basheer F, Ward AC, Liongue C. Genome editing in zebrafish: a practical overview. Brief Funct Genomics. 2015. doi:10.1093/bfgp/elv051.

  119. Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC. A primer for morpholino use in zebrafish. Zebrafish. 2009;6:69–77. doi:10.1089/zeb.2008.0555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RHA, Cuppen E. Efficient target-selected mutagenesis in zebrafish. Genome Res. 2003;13:2700–7. doi:10.1101/gr.1725103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. 2008;26:702–8. doi:10.1038/nbt1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh J-RJ, Joung JK. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31:227–9. doi:10.1038/nbt.2501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zu Y, Tong X, Wang Z, Liu D, Pan R, Li Z, Hu Y, Luo Z, Huang P, Wu Q, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods. 2013;10:329–31. doi:10.1038/nmeth.2374.

    Article  CAS  PubMed  Google Scholar 

  124. Asakawa K, Kawakami K. Targeted gene expression by the Gal4-UAS system in zebrafish. Dev Growth Differ. 2008;50:391–9. doi:10.1111/j.1440-169X.2008.01044.x.

    Article  CAS  PubMed  Google Scholar 

  125. Ziv L, Muto A, Schoonheim PJ, Meijsing SH, Strasser D, Ingraham HA, Schaaf MJM, Yamamoto KR, Baier H. An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Mol Psychiatry. 2013;18:681–91. doi:10.1038/mp.2012.64.

    Article  CAS  PubMed  Google Scholar 

  126. Santos EM, Kille P, Workman VL, Paull GC, Tyler CR. Sexually dimorphic gene expression in the brains of mature zebrafish. Comp Biochem Physiol A Mol Integr Physiol. 2008;149:314–24. doi:10.1016/j.cbpa.2008.01.010.

    Article  PubMed  CAS  Google Scholar 

  127. Wong RY, McLeod MM, Godwin J. Limited sex-biased neural gene expression patterns across strains in Zebrafish (Danio rerio). BMC Genomics. 2014;15:905. doi:10.1186/1471-2164-15-905.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Félix AS, Faustino AI, Cabral EM, Oliveira RF. Noninvasive measurement of steroid hormones in zebrafish holding-water. Zebrafish. 2013;10:110–5. doi:10.1089/zeb.2012.0792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Conradsen C, McGuigan K. Sexually dimorphic morphology and swimming performance relationships in wild-type zebrafish Danio rerio. J Fish Biol. 2015;87:1219–33. doi:10.1111/jfb.12784.

    Article  CAS  PubMed  Google Scholar 

  130. Tran S, Gerlai R. Individual differences in activity levels in zebrafish (Danio rerio). Behav Brain Res. 2013;257:224–9. doi:10.1016/j.bbr.2013.09.040.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Oswald ME, Drew RE, Racine M, Murdoch GK, Robison BD. Is behavioral variation along the bold-shy continuum associated with variation in the stress axis in zebrafish? Physiol Biochem Zool. 2012;85:718–28. doi:10.1086/668203.

    Article  PubMed  Google Scholar 

  132. Koolhaas JM, Korte SM, De Boer SF, Van Der Vegt BJ, Van Reenen CG, Hopster H, De Jong IC, Ruis MA, Blokhuis HJ. Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev. 1999;23:925–35.

    Article  CAS  PubMed  Google Scholar 

  133. Koolhaas JM, de Boer SF, Coppens CM, Buwalda B. Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front Neuroendocrinol. 2010;31:307–21. doi:10.1016/j.yfrne.2010.04.001.

    Article  CAS  PubMed  Google Scholar 

  134. Øverli Ø, Sørensen C, Pulman KGT, Pottinger TG, Korzan W, Summers CH, Nilsson GE. Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. Neurosci Biobehav Rev. 2007;31:396–412. doi:10.1016/j.neubiorev.2006.10.006.

    Article  PubMed  CAS  Google Scholar 

  135. Pottinger TG, Carrick TR. Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. Gen Comp Endocrinol. 1999;116:122–32. doi:10.1006/gcen.1999.7355.

    Article  CAS  PubMed  Google Scholar 

  136. Schjolden J, Stoskhus A, Winberg S. Does individual variation in stress responses and agonistic behavior reflect divergent stress coping strategies in juvenile rainbow trout? Physiol Biochem Zool. 2004;78:715–23. doi:10.1086/432153.

    Article  Google Scholar 

  137. Bolhuis JE, Schouten WGP, de Leeuw JA, Schrama JW, Wiegant VM. Individual coping characteristics, rearing conditions and behavioural flexibility in pigs. Behav Brain Res. 2004;152:351–60. doi:10.1016/j.bbr.2003.10.024.

    Article  PubMed  Google Scholar 

  138. Koolhaas JM, van Oortmerssen GA, den Daas S, Benus RF. Routine formation and flexibility in social and non-social behaviour of aggressive and non-aggressive male mice. Behaviour. 1990;112:176–93. doi:10.1163/156853990X00185.

    Article  Google Scholar 

  139. Ruiz-Gomez Mde L, Huntingford FA, Øverli Ø, Thörnqvist P-O, Höglund E. Response to environmental change in rainbow trout selected for divergent stress coping styles. Physiol Behav. 2011;102:317–22. doi:10.1016/j.physbeh.2010.11.023.

    Article  PubMed  CAS  Google Scholar 

  140. Brelin D, Petersson E, Dannewitz J, Dahl J, Winberg S. Frequency distribution of coping strategies in four populations of brown trout (Salmo trutta). Horm Behav. 2008;53:546–56. doi:10.1016/j.yhbeh.2007.12.011.

    Article  CAS  PubMed  Google Scholar 

  141. Wong RY, Dereje S, Sawyer S, Oxendine SE, Zhou L, Kezios ZD, Godwin J, Perrin F. Comparing behavioral responses across multiple assays of stress and anxiety in zebrafish (Danio rerio). Behaviour. 2012;149:1205–40. doi:10.1163/1568539X-00003018.

    Article  Google Scholar 

  142. Tudorache C, Schaaf MJM, Slabbekoorn H. Covariation between behaviour and physiology indicators of coping style in zebrafish (Danio rerio). J Endocrinol. 2013;219:251–8. doi:10.1530/JOE-13-0225.

    Article  CAS  PubMed  Google Scholar 

  143. Rey S, Boltana S, Vargas R, Roher N, Mackenzie S. Combining animal personalities with transcriptomics resolves individual variation within a wild-type zebrafish population and identifies underpinning molecular differences in brain function. Mol Ecol. 2013;22:6100–15. doi:10.1111/mec.12556.

    Article  CAS  PubMed  Google Scholar 

  144. Wong RY, Lamm MS, Godwin J. Characterizing the neurotranscriptomic states in alternative stress coping styles. BMC Genomics. 2015;16:425. doi:10.1186/s12864-015-1626-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Dell AI, Bender JA, Branson K, Couzin ID, de Polavieja GG, Noldus LPJJ, Pérez-Escudero A, Perona P, Straw AD, Wikelski M, et al. Automated image-based tracking and its application in ecology. Trends Ecol Evol. 2014;29:417–28. doi:10.1016/j.tree.2014.05.004.

    Article  PubMed  Google Scholar 

  146. Cachat J, Stewart A, Utterback E, Hart P, Gaikwad S, Wong K, Kyzar E, Wu N, Kalueff AV. Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS One. 2011;6, e17597. doi:10.1371/journal.pone.0017597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Miller N, Gerlai R. Automated tracking of zebrafish shoals and the analysis of shoaling behavior. In: Kalueff AV, Stewart AM, editors. Zebrafish Protocols for Neurobehavioral Research, 2012, Vol. 66, pp. 217–230. New York: Humana Press doi:10.1007/978-1-61779-597-8.

  148. Branson K, Robie AA, Bender J, Perona P, Dickinson MH. High-throughput ethomics in large groups of Drosophila. Nat Methods. 2009;6:451–7. doi:10.1038/nmeth.1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Oliveira RF, Rosenthal GG, Schlupp I, McGregor PK, Cuthill IC, Endler JA, Fleishman LJ, Zeil J, Barata E, Burford F, et al. Considerations on the use of video playbacks as visual stimuli: the Lisbon workshop consensus. Acta Ethol. 2000;3:61–5. doi:10.1007/s102110000019.

    Article  Google Scholar 

  150. Ingley SJ, Rahmani Asl M, Wu C, Cui R, Gadelhak M, Li W, Zhang J, Simpson J, Hash C, Butkowski T, et al. anyFish 2.0: an open-source software platform to generate and share animated fish models to study behavior. SoftwareX. 2015;3–4:13–21. doi:10.1016/j.softx.2015.10.001.

    Article  Google Scholar 

Download references

Acknowledgements

During the preparation of this manuscript ARN and RFO were supported by Fundação para a Ciência e a Tecnologia (grants SFRH/BPD/93317/2013 and EXCL/BIA-ANM/0549/2012, respectively). SW was supported by the Swedish Research Council (VR) and the Swedish research council FORMAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui F. Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nunes, A.R., Ruhl, N., Winberg, S., Oliveira, R.F. (2017). Social Phenotypes in Zebrafish. In: Kalueff, A. (eds) The rights and wrongs of zebrafish: Behavioral phenotyping of zebrafish. Springer, Cham. https://doi.org/10.1007/978-3-319-33774-6_5

Download citation

Publish with us

Policies and ethics