Skip to main content

Developing Zebrafish Depression-Related Models

  • Chapter
  • First Online:
The rights and wrongs of zebrafish: Behavioral phenotyping of zebrafish

Abstract

Animal models of disease are ultimately only as strong as the clinical phenotype(s) upon which they are based. Many obstacles impede our ability to design animal models of complex mental illnesses, such as depression. An animal model that attempts to re-create any disease strives to maximize construct, face, and predictive validities. Strategies to model depression in representative animals have largely focused on one or more symptoms of depression, which have left many knowledge gaps open. In approaching these knowledge gaps, there are three primary areas that we feel need to be focused on: development of translational animal models, identification of genetic determinants, and discovery of novel targets/biomarkers of depression. Here, we discuss how zebrafish may be utilized in the modeling and analysis of the mechanisms of depression. Furthermore, this chapter also provides a detailed description of the behavioral responses and makes recommendations for further development of these methods, and how they may be employed in forward genetic screening for mutations involved in depression-related phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Best JD, Alderton WK. Zebrafish: an in vivo model for the study of neurological diseases. Neuropsychiatr Dis Treat. 2008;4(3):567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Flint JSS. Animal models of psychiatric disease. Curr Opin Genet Dev. 2008;18:235–40.

    Article  CAS  PubMed  Google Scholar 

  3. Kyzar ER, Roth A, Gaikwad S, Green J, Collins C, El-Ounsi M, Davis A, Pham M, Stewart AM, Cachat J, Zukowska Z, Kalueff AV. On making zebrafish sad and anxious: developing novel aquatic models of affective disorders. IBNS Abstract, 2012.

    Google Scholar 

  4. Mathur P, Guo S. Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehaviroal phenotypes. Neurobiol Dis. 2010;40:66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alsop D, Vijayan MM. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am J Physiol Regul Integr Comp Physiol. 2008;294:711–9.

    Article  Google Scholar 

  6. Alsop D, Vijayan M. The zebrafish stress axis: molecular fallout from the teleost specific genome duplication event. Gen Comp Endocrinol. 2008;161:62–6.

    Article  PubMed  Google Scholar 

  7. Blaser R, Gerlai R. Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Methods. 2006;38:456–69.

    Article  PubMed  Google Scholar 

  8. Dooley K, Zon LI. Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev. 2000;10:252–6.

    Article  CAS  PubMed  Google Scholar 

  9. Norton W, Bally-Cuif L. Adult zebrafish as a model organism for behavioral genetics. BMC Neurosci. 2010;11:90.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sprague J, Doerry E, Douglas S, Westerfield M. The zebrafish information network (ZFIN): a resource for genetic, genomic and developmental research. Nucleic Acids Res. 2001;29:87–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zon L, Peterson R. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 2005;4:35–44.

    Article  CAS  PubMed  Google Scholar 

  12. Wullimann MF, Knipp S. Proliferation pattern changes in the zebrafish brain from embryonic through early postembryonic stages. Anat Embryol. 2000;202:385–400.

    Article  CAS  PubMed  Google Scholar 

  13. Ward A, Lieschke G. The zebrafish as a model system for human disease. Front Biosci. 2002;7:d827–33.

    Article  CAS  PubMed  Google Scholar 

  14. Shin J, Fishman M. From zebrafish to human: modular medical models. Annu Rev Genomics Hum Genet. 2002;3:311–40.

    Article  CAS  PubMed  Google Scholar 

  15. Moorman S. Development of sensory systems in zebrafish (Danio rerio). ILAR J. 2001;42:292–8.

    Article  CAS  PubMed  Google Scholar 

  16. McGrath P, Li CQ. Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today. 2008;13:394–401.

    Article  CAS  PubMed  Google Scholar 

  17. Lele Z, Krone PH. The zebrafish as a model system in developmental, toxicological and transgenic research. Biotechnol Adv. 1996;14:57–72.

    Article  CAS  PubMed  Google Scholar 

  18. Blackburn J, Liu S, Raimondi A, Ignatius M, Salthouse C, Langenau D. High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope. Nat Protoc. 2011;6:229–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kessler R, Chiu W, Demler O, Walters E. Prevalence, severity, and comorbidity of twelve-month DSM-IV disorders in the National Comorbidity Survey Replication (NCS-R). Arch Gen Psychiatry. 2005;62(6):617–27.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Willner P. The validity of animal models of depression. Psychopharmacology (Berl). 1984;83(1):1–16.

    Article  CAS  Google Scholar 

  21. Nemeroff C. The neurobiology of depression. Sci Am. 1998;278:42–9.

    Article  CAS  PubMed  Google Scholar 

  22. Egan R, Bergner C, Hart P, Cachat J, Canavello P, Elegante M, Elkhayat S, Bartels B, Tien A, Tien D, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff A. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res. 2009;205:38–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Geyer M, Markou A. The role of preclinical models in the development of psychotropic drugs. In: Davis K, Charney D, Coyle J, Nemeroff C, editors. Neuropsychopharmacology: the fifth generation of progress. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 446–55.

    Google Scholar 

  24. Kato T, Kubota M, Kasahara T. Animal models of bipolar disorder. Neurosci Biobehav Rev. 2007;31:832–42.

    Article  CAS  PubMed  Google Scholar 

  25. Leonard B. Animal models of depression. In: Briley M, Montgomery S, editors. Antidepressant therapy. London: Martin Dunitz Ltd; 1998. p. 87–109.

    Google Scholar 

  26. Willner P. Animal models of depression: an overview. Pharmacol Ther. 1990;45:425–55.

    Article  CAS  PubMed  Google Scholar 

  27. Dunlop B, Nemeroff C. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007;64:327–37.

    Article  CAS  PubMed  Google Scholar 

  28. Weiss J, Kilts C. Animal models of depression and schizophrenia. Washington, DC: American Psychiatric Press; 1995. p. 89–131.

    Google Scholar 

  29. Hasler G. Discovering endophenotypes for major depression. Neuropsychopharmacology. 2004;29:1765–81.

    Article  CAS  PubMed  Google Scholar 

  30. Geyer M, Markou A. Animal models of psychiatric disorders. In: Bloom F, Kupfer D, editors. Psychopharmacology: the fourth generation of progress. New York: Raven; 1995. p. 787–98.

    Google Scholar 

  31. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol. 2003;463:3–33.

    Article  CAS  PubMed  Google Scholar 

  32. Crusio E, van Abeelen JH. The genetic architecture of behavioral responses to novelty in mice. Heredity. 1986;56:55–63.

    Article  PubMed  Google Scholar 

  33. Csányi V, Gerlai R. Open-field behavior and the behavior-genetic analysis of the paradise fish (Macropodus opercularis). J Comp Psychol. 1988;102:326–36.

    Article  Google Scholar 

  34. Gerlai R, Csányi V. Genotype environment interaction and the correlation structure of behavioral elements in paradise fish (Macropodus opercularis). Physiol Behav. 1990;47:343–56.

    Article  CAS  PubMed  Google Scholar 

  35. Levin E, Bencan Z, Cerutti D. Anxiolytic effects of nicotine in zebrafish. Physiol Behav. 2007;90:54–8.

    Article  CAS  PubMed  Google Scholar 

  36. Garattini S, Giacalone E, Valzelli L. Isolation, aggressiveness and brain 5-hydroxytriptamine turnover. J Pharm Pharmacol. 1967;19:338–9.

    Article  CAS  PubMed  Google Scholar 

  37. Garzon J, del Rio J. Hypersensitivity induced in rats by long term isolation: further studies on a new animal model for the detection of antidepressants. Eur J Pharmacol. 1981;74:287–94.

    Article  CAS  PubMed  Google Scholar 

  38. Mineur YS, Belzung C, Crusio WE. Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behav Brain Res. 2006;175(1):43–50.

    Article  PubMed  Google Scholar 

  39. Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005;52(2):90–110.

    Article  CAS  PubMed  Google Scholar 

  40. Yalcin I, Belzung C, Surget A. Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey. Behav Brain Res. 2008;193(1):140–3.

    Article  CAS  PubMed  Google Scholar 

  41. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl). 1997;134(4):319–29.

    Article  CAS  Google Scholar 

  42. Cachat J, et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc. 2010;5(11):1786–99.

    Article  CAS  PubMed  Google Scholar 

  43. Champagne DL, et al. Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav Brain Res. 2010;214(2):332–42.

    Article  PubMed  Google Scholar 

  44. Piato AL, et al. Unpredictable chronic stress model in zebrafish (Danio rerio): behavioral and physiological responses. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(2):561–7.

    Article  CAS  PubMed  Google Scholar 

  45. Surget A, et al. Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry. 2011;16(12):1177–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chakravarty S, et al. Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PLoS One. 2013;8(5):e63302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Manuel R, et al. Unpredictable chronic stress decreases inhibitory avoidance learning in Tuebingen long-fin zebrafish: stronger effects in the resting phase than in the active phase. J Exp Biol. 2014;217(Pt 21):3919–28.

    Article  PubMed  Google Scholar 

  48. Pavlidis M, Theodoridi A, Tsalafouta A. Neuroendocrine regulation of the stress response in adult zebrafish, Danio rerio. Prog Neuropsychopharmacol Biol Psychiatry. 2015;60:121–31.

    Article  CAS  PubMed  Google Scholar 

  49. Zimmermann FF, et al. Unpredictable chronic stress alters adenosine metabolism in zebrafish brain. Mol Neurobiol. 2015;53:2518–28.

    Article  PubMed  Google Scholar 

  50. Ziv L, et al. An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Mol Psychiatry. 2013;18(6):681–91.

    Article  CAS  PubMed  Google Scholar 

  51. Griffiths BB, et al. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Front Behav Neurosci. 2012;6:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kyzar E, et al. Behavioral effects of bidirectional modulators of brain monoamines reserpine and d-amphetamine in zebrafish. Brain Res. 2013;1527:108–16.

    Article  CAS  PubMed  Google Scholar 

  53. Pittman JT, Ichikawa KM. iPhone(R) applications as versatile video tracking tools to analyze behavior in zebrafish (Danio rerio). Pharmacol Biochem Behav. 2013;106:137–42.

    Article  CAS  PubMed  Google Scholar 

  54. Antelman S, Caggiula A, Kucinski B, Fowler H, Gerhon S, Edwards D. The effects of lithium on a potential cycling model of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 1998;22:495–510.

    Article  CAS  PubMed  Google Scholar 

  55. Loucks E, Carvan 3rd MJ. Strain-dependent effects of developmental ethanol exposure in zebrafish. Neurotoxicol Teratol. 2004;26:745–55.

    Article  CAS  PubMed  Google Scholar 

  56. Fernandes Y, Gerlai R. Long-term behavioral changes in response to early developmental exposure to ethanol in zebrafish. Clin Exp Res. 2009;33:601–9.

    Article  CAS  Google Scholar 

  57. Gerlai R, Chatterjee D, Pereira T, Sawashima T, Krishnannair R. Acute and chronic alcohol dose: population differences in behavior and neurochemistry of zebrafish. Genes Brain Behav. 2009;8:586–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gerlai R, Lahav M, Guo S, Rosenthal A. Drinks like a fish: Zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav. 2000;67:773–82.

    Article  CAS  PubMed  Google Scholar 

  59. Darland T, Dowling J. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci U S A. 2001;98:11691–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ninkovic J, Bally-Cuif L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods. 2006;39:262–74.

    Article  CAS  PubMed  Google Scholar 

  61. Lopez-Patino M, Yu L, Cabral H, Zhdanova I. Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol Behav. 2008;93:160–71.

    Article  CAS  PubMed  Google Scholar 

  62. Peitsaro N, Kaslin J, Anichtchik O, Panula P. Modulation of the histaminergic system and behaviour by alpha-fluoromethylhistidine in zebrafish. J Neurochem. 2003;86:432–41.

    Article  CAS  PubMed  Google Scholar 

  63. Dulawa S, Holick K, Gundersen B, Hen R. Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology. 2004;29:1321–30.

    Article  CAS  PubMed  Google Scholar 

  64. Childs E, Hohoff C, Deckert J, Xu K, Badner J, de Wit H. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology. 2008;33:2791–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois J. The anxiogenic-like effect of caffeine in two experimental procedures measuring anxiety in the mouse is not shared by selective A(2A) adenosine receptor antagonists. Psychopharmacology (Berl). 2000;148:153–63.

    Article  Google Scholar 

  66. Barcellos G, Ritter F, Kreutz C, Quevedo M, Bolognesi da Silva L, Bedin C. Whole-body cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio. Aquaculture. 2007;272:774–8.

    Article  CAS  Google Scholar 

  67. Baier H. Depression-like behavior in zebrafish mutants with disruption of the glucocorticoid receptor. Society for Neuroscience Annual Meeting, 2010. Abstract 884.1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Pittman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pittman, J., Piato, A. (2017). Developing Zebrafish Depression-Related Models. In: Kalueff, A. (eds) The rights and wrongs of zebrafish: Behavioral phenotyping of zebrafish. Springer, Cham. https://doi.org/10.1007/978-3-319-33774-6_2

Download citation

Publish with us

Policies and ethics