Skip to main content

Abstract

The zebrafish has become an established model in neuroscience due to the ease with which gene discovery, chemical screening, behaviour, and disease modelling can be performed. More recently, neuroimaging, a crucial pre-clinical technique for probing tissue structure, examining volumetric changes, and studying in vivo brain activity has also been applied to zebrafish. The zebrafish brain is particularly attractive for neuroimaging due to its small size, numerous translucent strains, and distinct forebrain organization. In this chapter we discuss the range of imaging techniques which have been utilized to examine the zebrafish brain. While many of these methods have only begun to be utilized in zebrafish, correlating neuroimaging phenotypes with behaviour in zebrafish has a bright future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalueff AV, et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish. 2013;10(1):70–86.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stewart AM, et al. Molecular psychiatry of zebrafish. Mol Psychiatry. 2015;20(1):2–17.

    Article  CAS  PubMed  Google Scholar 

  3. Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci. 2014;35(2):63–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hill A, et al. Neurodevelopmental defects in zebrafish (Danio rerio) at environmentally relevant dioxin (TCDD) concentrations. Toxicol Sci. 2003;76(2):392–9.

    Article  CAS  PubMed  Google Scholar 

  5. Hinsch K, Zupanc GKH. Generation and long-term persistence of new neurons in the adult zebrafish brain: a quantitative analysis. Neuroscience. 2007;146:679–96.

    Article  CAS  PubMed  Google Scholar 

  6. Mueller T. What is the thalamus in zebrafish? Front Neurosci. 2012;6:1–14.

    Article  Google Scholar 

  7. Ullmann JF, et al. Development of MRI-based atlases of non-human brains. J Comp Neurol. 2015;523(3):391–405.

    Article  PubMed  Google Scholar 

  8. Kabli S, et al. Magnetic resonance microscopy of adult zebrafish. Zebrafish. 2006;3(4):431–9.

    Article  PubMed  Google Scholar 

  9. Ullmann JFP, Cowin G, Collin SP. Magnetic resonance microscopy of the barramundi (Lates calcarifer) brain. J Morphol. 2010;271:1446–56.

    Article  PubMed  Google Scholar 

  10. Ullmann JFP, Cowin G, Collin SP. Quantitative assessment of brain volumes in fish: comparison of methodologies. Brain Behav Evol. 2010;76:261–70.

    Article  PubMed  Google Scholar 

  11. Ullmann JFP, et al. Magnetic resonance histology of the adult zebrafish brain: optimization of fixation and gadolinium contrast enhancement. NMR Biomed. 2010;23(4):341–6.

    PubMed  Google Scholar 

  12. Ullmann JF, et al. A three-dimensional digital atlas of the zebrafish brain. Neuroimage. 2010;51(1):76–82.

    Article  PubMed  Google Scholar 

  13. Janke AL, Ullmann JF. Robust methods to create ex vivo minimum deformation atlases for brain mapping. Methods. 2015;73:18–26.

    Article  CAS  PubMed  Google Scholar 

  14. Ramirez IB, et al. Impaired neural development in a zebrafish model for Lowe syndrome. Hum Mol Genet. 2012;21(8):1744–59.

    Article  CAS  PubMed  Google Scholar 

  15. Mori S, et al. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45(2):265–9.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, van Zijl PCM, Mori S. Three-dimensional diffusion tensor magnetic resonance microimaging of adult mouse brain and hippocampus. Neuroimage. 2002;15:892–901.

    Article  PubMed  Google Scholar 

  17. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51(5):527–39.

    Article  CAS  PubMed  Google Scholar 

  18. Shepherd TM, et al. Structural insights from high-resolution diffusion tensor imaging and tractography of the isolated rat hippocampus. Neuroimage. 2006;32(4):1499–509.

    Article  PubMed  Google Scholar 

  19. Freidlin RZ, et al. Diffusion tensor MR microscopy of adult zebrafish. In: Conference: proceedings of the international society for magnetic resonance in medicine, Kyoto Japan. 2004.

    Google Scholar 

  20. Ullmann JFP. Three-dimensional imaging of the teleost brain. PhD Thesis. Brisbane: School of Biomedical Sciences, The University of Queensland; 2010. p. 152.

    Google Scholar 

  21. Bassi A, Schmid B, Huisken J. Optical tomography complements light sheet microscopy for in toto imaging of zebrafish development. Development. 2015;142(5):1016–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang J, Ge W, Yuan Z. In vivo three-dimensional characterization of the adult zebrafish brain using a 1325 nm spectral-domain optical coherence tomography system with the 27 frame/s video rate. Biomed Opt Express. 2015;6(10):3932–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Correia T, et al. Accelerated optical projection tomography applied to in vivo imaging of zebrafish. PLoS One. 2015;10(8), e0136213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rao KD, et al. Real-time in vivo imaging of adult zebrafish brain using optical coherence tomography. J Biophotonics. 2009;2:1–4.

    Google Scholar 

  25. Aoki T, et al. Imaging of neural ensemble for the retrieval of a learned behavioral program. Neuron. 2013;78(5):881–94.

    Article  CAS  PubMed  Google Scholar 

  26. Ahrens MB, et al. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods. 2013;10(5):413–20.

    Article  CAS  PubMed  Google Scholar 

  27. Severi KE, et al. Neural control and modulation of swimming speed in the larval zebrafish. Neuron. 2014;83(3):692–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thiele TR, Donovan JC, Baier H. Descending control of swim posture by a midbrain nucleus in zebrafish. Neuron. 2014;83(3):679–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Semmelhack JL, et al. A dedicated visual pathway for prey detection in larval zebrafish. eLife 2014;3:e04878.

    Google Scholar 

  30. Kubo F, et al. Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron. 2014;81(6):1344–59.

    Article  CAS  PubMed  Google Scholar 

  31. Bryson-Richardson RJ, et al. FishNet: an online database of zebrafish anatomy. BMC Biol. 2007;5(34):1–8.

    Google Scholar 

  32. Ullmann JF, et al. Enhanced characterization of the zebrafish brain as revealed by super-resolution track-density imaging. Brain Struct Funct. 2015;220(1):457–68.

    Article  CAS  PubMed  Google Scholar 

  33. Wullimann MF, Rupp B, Reichert H. Neuroanatomy of the zebrafish brain: a topological atlas. Basel: Birkhäuser Verlag; 1996. p. 144.

    Book  Google Scholar 

  34. Mueller T, Wullimann MF. Atlas of early zebrafish brain development. Amsterdam: Elsevier; 2005.

    Google Scholar 

  35. Keller PJ, et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science. 2008;322(5904):1065–9.

    Article  CAS  PubMed  Google Scholar 

  36. Keller PJ, et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat Methods. 2010;7(8):637–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ronneberger O, et al. ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains. Nat Methods. 2012;9(7):735–42.

    Article  CAS  PubMed  Google Scholar 

  38. Randlett O, et al. Whole-brain activity mapping onto a zebrafish brain atlas. Nat Methods. 2015;12(11):1039–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaufmann A, et al. Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope. Development. 2012;139(17):3242–7.

    Article  CAS  PubMed  Google Scholar 

  40. Scott EK, et al. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods. 2007;4(4):323–6.

    CAS  PubMed  Google Scholar 

  41. Nakai J, Ohkura M, Imoto K. A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol. 2001;19(2):137–41.

    Article  CAS  PubMed  Google Scholar 

  42. Chen TW, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499(7458):295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Muto A, Kawakami K. Prey capture in zebrafish larvae serves as a model to study cognitive functions. Front Neural Circuits. 2013;7:110.

    PubMed  PubMed Central  Google Scholar 

  44. Ahrens MB, et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature. 2012;485(7399):471–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nikolaou N, Meyer MP. Lamination speeds the functional development of visual circuits. Neuron. 2015;88(5):999–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vendrell-Llopis N, Yaksi E. Evolutionary conserved brainstem circuits encode category, concentration and mixtures of taste. Sci Rep. 2015;5:17825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Akerboom J, et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci. 2013;6:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao Y, et al. An expanded palette of genetically encoded Ca(2)(+) indicators. Science. 2011;333(6051):1888–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fosque BF, et al. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators. Science. 2015;347(6223):755–60.

    Article  CAS  PubMed  Google Scholar 

  50. Berlin S, et al. Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nat Methods. 2015;12(9):852–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jin L, et al. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron. 2012;75(5):779–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hochbaum DR, et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods. 2014;11(8):825–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. St-Pierre F, et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci. 2014;17(6):884–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hou JH, et al. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents. Front Physiol. 2014;5:344.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cao G, et al. Genetically targeted optical electrophysiology in intact neural circuits. Cell. 2013;154(4):904–13.

    Article  CAS  PubMed  Google Scholar 

  56. Flytzanis NC, et al. Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nat Commun. 2014;5:4894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gong Y, et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science. 2015;350:1361–1366.

    Google Scholar 

  58. Huisken J, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 2004;305(5686):1007–9.

    Article  CAS  PubMed  Google Scholar 

  59. Huisken J, Stainier DYR. Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt Lett. 2007;32(17):2608–10.

    Article  PubMed  Google Scholar 

  60. de Souza N. Method of the year 2014. Nat Methods. 2015;12(1):1.

    Google Scholar 

  61. Truong TV, et al. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat Methods. 2011;8(9):757–60.

    Article  CAS  PubMed  Google Scholar 

  62. Mahou P, et al. Multicolor two-photon light-sheet microscopy. Nat Methods. 2014;11(6):600–1.

    Article  CAS  PubMed  Google Scholar 

  63. Wolf S, et al. Whole-brain functional imaging with two-photon light-sheet microscopy. Nat Methods. 2015;12(5):379–80.

    Article  CAS  PubMed  Google Scholar 

  64. Chhetri RK, et al. Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat Methods. 2015;12(12):1171–8.

    Article  CAS  PubMed  Google Scholar 

  65. Krzic U, et al. Multiview light-sheet microscope for rapid in toto imaging. Nat Methods. 2012;9(7):730–3.

    Article  CAS  PubMed  Google Scholar 

  66. Tomer R, et al. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods. 2012;9(7):755–63.

    Article  CAS  PubMed  Google Scholar 

  67. Chen BC, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science. 2014;346(6208):1257998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Vladimirov N, et al. Light-sheet functional imaging in fictively behaving zebrafish. Nat Methods. 2014;11(9):883–4.

    Article  CAS  PubMed  Google Scholar 

  69. Wu Y, et al. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat Biotechnol. 2013;31(11):1032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bouchard MB, et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms. Nat Photonics. 2015;9(2):113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Reynaud EG, et al. Guide to light-sheet microscopy for adventurous biologists. Nat Methods. 2015;12(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  72. Keller PJ, Ahrens MB, Freeman J. Light-sheet imaging for systems neuroscience. Nat Methods. 2015;12(1):27–9.

    Article  CAS  PubMed  Google Scholar 

  73. Keller PJ, et al. Digital scanned laser light-sheet fluorescence microscopy (DSLM) of zebrafish and Drosophila embryonic development. Cold Spring Harb Protoc. 2011;2011(10):1235–43.

    Article  PubMed  Google Scholar 

  74. Ruska E, Knoll M. Das elektronenmikroskop. Z Phys. 1932;78:318–39.

    Article  Google Scholar 

  75. Schmitt EA, Dowling JE. Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J Comp Neurol. 1999;404(4):515–36.

    Article  CAS  PubMed  Google Scholar 

  76. Hansen A, Reutter K, Zeiske E. Taste bud development in the zebrafish, Danio rerio. Dev Dyn. 2002;223(4):483–96.

    Article  PubMed  Google Scholar 

  77. Wilson SW, et al. The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerio. Development. 1990;108(1):121–45.

    CAS  PubMed  Google Scholar 

  78. Hansen A, Zeiske E. Development of the olfactory organ in the zebrafish, Brachydanio Rerio. J Comp Neurol. 1993;333(2):289–300.

    Article  CAS  PubMed  Google Scholar 

  79. Lindsey BW, Darabie A, Tropepe V. The cellular composition of neurogenic periventricular zones in the adult zebrafish forebrain. J Comp Neurol. 2012;520(10):2275–316.

    Article  PubMed  Google Scholar 

  80. Kimmel CB, Sessions SK, Kimmel RJ. Morphogenesis and synaptogenesis of the zebrafish Mauthner neuron. J Comp Neurol. 1981;198(1):101–20.

    Article  CAS  PubMed  Google Scholar 

  81. Faas FG, et al. Virtual nanoscopy: generation of ultra-large high resolution electron microscopy maps. J Cell Biol. 2012;198(3):457–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. White JG, et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986;314(1165):1–340.

    Article  CAS  PubMed  Google Scholar 

  83. Kasthuri N, et al. Saturated reconstruction of a volume of neocortex. Cell. 2015;162(3):648–61.

    Article  CAS  PubMed  Google Scholar 

  84. Kuwajima M, Mendenhall JM, Harris KM. Large-volume reconstruction of brain tissue from high-resolution serial section images acquired by SEM-based scanning transmission electron microscopy. Methods Mol Biol. 2013;950:253–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hayworth KJ, et al. Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front Neural Circuits. 2014;8:68.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Denk W, Horstmann H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2004;2(11), e329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Eberle AL, et al. High-resolution, high-throughput imaging with a multibeam scanning electron microscope. J Microsc. 2015;259(2):114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tapia JC, et al. High-contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy. Nat Protoc. 2012;7(2):193–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mikula S, Denk W. High-resolution whole-brain staining for electron microscopic circuit reconstruction. Nat Methods. 2015;12(6):541–6.

    Article  CAS  PubMed  Google Scholar 

  90. de Boer P, Hoogenboom JP, Giepmans BN. Correlated light and electron microscopy: ultrastructure lights up! Nat Methods. 2015;12(6):503–13.

    Article  PubMed  CAS  Google Scholar 

  91. Chang YW, et al. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods. 2014;11(7):737–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Paez-Segala MG, et al. Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat Methods. 2015;12(3): 215–8, 4 p. following 218.

    Google Scholar 

  93. Nixon SJ, et al. A single method for cryofixation and correlative light, electron microscopy and tomography of zebrafish embryos. Traffic. 2009;10(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  94. Watanabe S, et al. Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods. 2011;8(1):80–4.

    Article  CAS  PubMed  Google Scholar 

  95. Schieber NL, et al. Modern approaches for ultrastructural analysis of the zebrafish embryo. In: Müller-Reichert T, editor. Methods in cell biology. Amsterdam: Academic Press; 2010. p. 425–42.

    Google Scholar 

  96. Ariotti N, et al. Modular detection of GFP-labeled proteins for rapid screening by electron microscopy in cells and organisms. Dev Cell. 2015;35(4):513–25.

    Article  CAS  PubMed  Google Scholar 

  97. Friedrich RW, Genoud C, Wanner AA. Analyzing the structure and function of neuronal circuits in zebrafish. Front Neural Circuits. 2013;7:71.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Richards KL, et al. Hippocampal volume and cell density changes in a mouse model of human genetic epilepsy. Neurology. 2013;80(13):1240–6.

    Article  PubMed  Google Scholar 

  99. Ellegood J, et al. Neuroanatomical analysis of the BTBR mouse model of autism using magnetic resonance imaging and diffusion tensor imaging. Neuroimage. 2013;70:288–300.

    Article  PubMed  Google Scholar 

  100. Ellegood J, et al. Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging. Neuroimage. 2010;53(3):1023–9.

    Article  PubMed  Google Scholar 

  101. Ng MC, Yang YL, Lu KT. Behavioral and synaptic circuit features in a zebrafish model of fragile X syndrome. PLoS One. 2013;8(3), e51456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim L, et al. Anxiety, hyperactivity and stereotypy in a zebrafish model of fragile X syndrome and autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2014;55:40–9.

    Article  PubMed  Google Scholar 

  103. den Broeder MJ, et al. Generation and characterization of FMR1 knockout zebrafish. PLoS One. 2009;4(11), e7910.

    Article  CAS  Google Scholar 

  104. Ritter DA, Bhatt DH, Fetcho JR. In vivo imaging of zebrafish reveals differences in the spinal networks for escape and swimming movements. J Neurosci. 2001;21(22):8956–65.

    CAS  PubMed  Google Scholar 

  105. Douglass AD, et al. Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr Biol. 2008;18(15):1133–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Candelier R, et al. A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish. Sci Rep. 2015;5:12196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pardo-Martin C, et al. High-throughput in vivo vertebrate screening. Nat Methods. 2010;7(8):634–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lin X, et al. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates. Lab Chip. 2015;15(3):680–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Institute of Health (5R03NS077295-02) and the National Imaging Facility. JFPU was also supported by a University of Queensland Early Career Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy F. P. Ullmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ullmann, J.F.P., Janke, A.L. (2017). Neuroimaging Phenotypes in Zebrafish. In: Kalueff, A. (eds) The rights and wrongs of zebrafish: Behavioral phenotyping of zebrafish. Springer, Cham. https://doi.org/10.1007/978-3-319-33774-6_13

Download citation

Publish with us

Policies and ethics