Skip to main content

Stem Cell Therapy for Autism

  • Chapter
  • First Online:
  • 841 Accesses

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, abnormal to absent verbal communication, restricted interests, and repetitive stereotypic verbal and non-verbal behaviors, influencing the ability to relate to and communicate. The core symptoms of ASDs entail the cognitive, emotional, and neuro-behavioural domains. Recent studies showed that ASDs closely relate to immune disorders. Some studies consider ASDs as autoimmune diseases. Stem cells, particularly mesenchymal stem cells (MSCs), have been used to treat a variety of autoimmune diseases. MSCs exhibit strong immune modulation both in vitro and in vivo. To date, about ten clinical trials have used MSCs to treat ASDs in different countries. Although some benefit from treatment have been observed, there is still controversy on the use of MSC transplantation for ASDs due to inadequate scientific evidence. This review aims to provide a concise summary of results related to ASD treatment by use of stem cell transplantation. Moreover, scientific rationale for the use of MSCs to treat ASDs will be presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALS:

Amyotrophic lateral sclerosis

AS:

Ankylosing spondylitis

ASDs:

Autism spectrum disorders

BMMNCs:

Bone marrow-derived mononuclear cells

BDNF:

Brain-derived neurotrophic factor

CARS:

Childhood Autism Rating Scale

DCs:

Dendritic cells

HSCs:

Hematopoietic stem cells

iPSCs:

Induced pluripotent stem cells

MSCs:

Mesenchymal stem cells

MSA:

Multiple system atrophy

NK:

Natural killer cells

Treg cells:

Regulatory cells

SS:

Sjögren’s syndrome

SLE:

Systemic lupus erythematosus

EBMT:

The European Bone Marrow Transplantation

UCMSC:

Umbilical cord derived mesenchymal stem cells

References

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Alexander T, Thiel A, Rosen O, Massenkeil G, Sattler A, Kohler S, Mei H, Radtke H, Gromnica-Ihle E, Burmester GR et al (2009) Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 113:214–223

    Article  CAS  PubMed  Google Scholar 

  • Al-Hakbany M, Awadallah S, Al-Ayadhi L (2014) The relationship of HLA class I and II alleles and haplotypes with autism: a case control study. Autism Res Treat 2014:242048

    PubMed  PubMed Central  Google Scholar 

  • Asari S, Itakura S, Ferreri K, Liu CP, Kuroda Y, Kandeel F, Mullen Y (2009) Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol 37:604–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atladottir HO, Pedersen MG, Thorsen P, Mortensen PB, Deleuran B, Eaton WW, Parner ET (2009) Association of family history of autoimmune diseases and autism spectrum disorders. Pediatrics 124:687–694

    Article  PubMed  Google Scholar 

  • Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, Pennesi G (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35:1482–1490

    Article  CAS  PubMed  Google Scholar 

  • Bourgeron T (2009) A synaptic trek to autism. Curr Opin Neurobiol 19:231–234

    Article  CAS  PubMed  Google Scholar 

  • Bradstreet JJ, Sych N, Antonucci N, Klunnik M, Ivankova O, Matyashchuk I, Demchuk M, Siniscalco D (2014) Efficacy of fetal stem cell transplantation in autism spectrum disorders: an open-labeled pilot study. Cell Transplant 23(Suppl 1):S105–S112

    Article  PubMed  Google Scholar 

  • Burt R, Traynor A, Cohen B, Karlin K, Davis F, Stefoski D, Terry C, Lobeck L, Russell E, Goolsby C (1998a) T cell-depleted autologous hematopoietic stem cell transplantation for multiple sclerosis: report on the first three patients. Bone Marrow Transplant 21:537–541

    Article  CAS  PubMed  Google Scholar 

  • Burt RK, Padilla J, Begolka WS, Canto MC, Miller SD (1998b) Effect of disease stage on clinical outcome after syngeneic bone marrow transplantation for relapsing experimental autoimmune encephalomyelitis. Blood 91:2609–2616

    CAS  PubMed  Google Scholar 

  • Chen L, Zhang W, Yue H, Han Q, Chen B, Shi M, Li J, Li B, You S, Shi Y et al (2007) Effects of human mesenchymal stem cells on the differentiation of dendritic cells from CD34+ cells. Stem Cells Dev 16:719–731

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Luo R, Xu Y, Cai X, Li W, Tan K, Huang J, Dai Y (2013) Generation of systemic lupus erythematosus-specific induced pluripotent stem cells from urine. Rheumatol Int 33:2127–2134

    Article  CAS  PubMed  Google Scholar 

  • Ciccocioppo R, Gallia A, Sgarella A, Kruzliak P, Gobbi PG, Corazza GR (2015) Long-term follow-up of crohn disease fistulas after local injections of bone marrow-derived mesenchymal stem cells. Mayo Clin Proc 90:747–755

    Article  PubMed  Google Scholar 

  • Connolly AM, Chez MG, Pestronk A, Arnold ST, Mehta S, Deuel RK (1999) Serum autoantibodies to brain in Landau-Kleffner variant, autism, and other neurologic disorders. J Pediatr 134:607–613

    Article  CAS  PubMed  Google Scholar 

  • Connolly AM, Chez M, Streif EM, Keeling RM, Golumbek PT, Kwon JM, Riviello JJ, Robinson RG, Neuman RJ, Deuel RMK (2006) Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau-Kleffner syndrome, and epilepsy. Biol Psychiatry 59:354–363

    Article  CAS  PubMed  Google Scholar 

  • Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372

    Article  CAS  PubMed  Google Scholar 

  • Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, Barnes CC, Pierce K (2011) Neuron number and size in prefrontal cortex of children with autism. JAMA 306:2001–2010

    Article  CAS  PubMed  Google Scholar 

  • Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  PubMed  Google Scholar 

  • Dulamea A (2015) Mesenchymal stem cells in multiple sclerosis – translation to clinical trials. J Med Life 8:24–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsäter H (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39:25–27

    Article  CAS  PubMed  Google Scholar 

  • Durez P, Toungouz M, Schandené L, Lambermont M, Goldman M (1998) Remission and immune reconstitution after T-cell-depleted stem-cell transplantation for rheumatoid arthritis. Lancet 352:881

    Article  CAS  PubMed  Google Scholar 

  • Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP (2009) Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4 + CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol 156:149–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enstrom AM, Van de Water JA, Ashwood P (2009) Autoimmunity in autism. Curr Opin Investig Drugs 10:463–473

    CAS  PubMed  Google Scholar 

  • Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    Article  CAS  PubMed  Google Scholar 

  • Fernandez M, Simon V, Herrera G, Cao C, Del Favero H, Minguell JJ (1997) Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transplant 20:265–271

    Article  CAS  PubMed  Google Scholar 

  • Fossati V, Douvaras P (2014) Generating induced pluripotent stem cells for multiple sclerosis therapy. Regen Med 9:709–711

    Article  CAS  PubMed  Google Scholar 

  • Gharibi T, Ahmadi M, Seyfizadeh N, Jadidi-Niaragh F, Yousefi M (2015) Immunomodulatory characteristics of mesenchymal stem cells and their role in the treatment of multiple sclerosis. Cell Immunol 293:113–121

    Article  CAS  PubMed  Google Scholar 

  • Gough SCL, Simmonds MJ (2007) The HLA region and autoimmune disease: associations and mechanisms of action. Curr Genomics 8:453–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu F, Wang D, Zhang H, Feng X, Gilkeson GS, Shi S, Sun L (2014) Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clin Rheumatol 33:1611–1619

    Article  PubMed  Google Scholar 

  • Hajivalili M, Pourgholi F, Kafil HS, Jadidi-Niaragh F, Yousefi M (2015) Mesenchymal stem cells in the treatment of amyotrophic lateral sclerosis. Curr Stem Cell Res Ther 11(1):41–50

    Article  Google Scholar 

  • Hou T, Xu J, Wu X, Xie Z, Luo F, Zhang Z, Zeng L (2009) Umbilical cord Wharton’s Jelly: a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Eng Part A 15:2325–2334

    Article  CAS  PubMed  Google Scholar 

  • Huss R, Lange C, Weissinger EM, Kolb HJ, Thalmeier K (2000) Evidence of peripheral blood-derived, plastic-adherent CD34(-/low) hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cells 18:252–260

    Article  CAS  PubMed  Google Scholar 

  • Hutsler JJ, Zhang H (2010) Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309:83–94

    Article  CAS  PubMed  Google Scholar 

  • Ichim TE, Solano F, Glenn E, Morales F, Smith L, Zabrecky G, Riordan NH (2007) Stem cell therapy for autism. J Transl Med 5:1

    Article  Google Scholar 

  • Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Chung JH, Choung YH, Kim ES, Yang HC, Choung PH (2007) Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng 13:767–773

    Article  CAS  PubMed  Google Scholar 

  • Kestendjieva S, Kyurkchiev D, Tsvetkova G, Mehandjiev T, Dimitrov A, Nikolov A, Kyurkchiev S (2008) Characterization of mesenchymal stem cells isolated from the human umbilical cord. Cell Biol Int 32:724–732

    Article  CAS  PubMed  Google Scholar 

  • Kita K, Gauglitz GG, Phan TT, Herndon DN, Jeschke MG (2010) Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev 19:491–502

    Article  CAS  PubMed  Google Scholar 

  • Lachmann N, Ackermann M, Frenzel E, Liebhaber S, Brennig S, Happle C, Hoffmann D, Klimenkova O, Luttge D, Buchegger T et al (2015) Large-scale hematopoietic differentiation of human induced pluripotent stem cells provides granulocytes or macrophages for cell replacement therapies. Stem Cell Rep 4:282–296

    Article  CAS  Google Scholar 

  • Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard M-P, Raynaud M, Ronce N, Lemonnier E, Calvas P (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Gen 74:552–557

    Article  CAS  Google Scholar 

  • Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    Article  CAS  PubMed  Google Scholar 

  • Lee PH, Lee JE, Kim HS, Song SK, Lee HS, Nam HS, Cheong JW, Jeong Y, Park HJ, Kim DJ et al (2012) A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol 72:32–40

    Article  PubMed  Google Scholar 

  • Lewis CM, Suzuki M (2014) Therapeutic applications of mesenchymal stem cells for amyotrophic lateral sclerosis. Stem Cell Res Ther 5:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Liew A, O’Brien T, Egan L (2014) Mesenchymal stromal cell therapy for Crohn’s disease. Dig Dis 32(Suppl 1):50–60

    Article  PubMed  Google Scholar 

  • Lim SH, Kell J, Al-Sabah A, Bashi W, Bailey-Wood R (1997) Peripheral blood stem-cell transplantation for refractory autoimmune thrombocytopenic purpura. Lancet 349:475–475

    Google Scholar 

  • Lim WF, Inoue-Yokoo T, Tan KS, Lai MI, Sugiyama D (2013) Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells. Stem Cell Res Ther 4:71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Carrington M, Kaslow RA, Gao X, Rinaldo CR, Jacobson LP, Margolick JB, Phair J, O’Brien SJ, Detels R (2003) Association of polymorphisms in human leukocyte antigen class I and transporter associated with antigen processing genes with resistance to human immunodeficiency virus type 1 infection. J Infect Dis 187:1404–1410

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Joglekar MV, Sumer H, Hardikar AA, Teede H, Verma PJ (2014) Integration-free human induced pluripotent stem cells from type 1 diabetes patient skin fibroblasts show increased abundance of pancreas-specific microRNAs. Cell Med 7:15–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv YT, Zhang Y, Liu M, Qiuwaxi JN, Ashwood P, Cho SC, Huan Y, Ge RC, Chen XW, Wang ZJ et al (2013) Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J Transl Med 11:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86:1099–1100

    CAS  PubMed  Google Scholar 

  • Marmont A, Van Lint M, Gualandi F, Bacigalupo A (1997) Autologous marrow stem cell transplantation for severe systemic lupus erythematosus of long duration. Lupus 6:545–548

    Article  CAS  PubMed  Google Scholar 

  • Martini A, Maccario R, Ravelli A, Montagna D, De Benedetti F, Bonetti F, Viola S, Zecca M, Perotti C, Locatelli F (1999) Marked and sustained improvement 2 years after autologous stem cell transplantation in a girl with systemic sclerosis. Rheumatology 38:773–773

    Google Scholar 

  • Money J, Bobrow NA, Clarke FC (1971) Autism and autoimmune disease: a family study. J Autism Child Schizophr 1:146–160

    Article  CAS  PubMed  Google Scholar 

  • Morgan JT, Chana G, Abramson I, Semendeferi K, Courchesne E, Everall IP (2012) Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex in autism. Brain Res 1456:72–81

    Article  CAS  PubMed  Google Scholar 

  • Muraro PA, Douek DC, Packer A, Chung K, Guenaga FJ, Cassiani-Ingoni R, Campbell C, Memon S, Nagle JW, Hakim FT et al (2005) Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med 201:805–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neale BM, Kou Y, Liu L, Ma’Ayan A, Samocha KE, Sabo A, Lin C-F, Stevens C, Wang L-S, Makarov V (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:242–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phuc PV, Nhung TH, Loan DT, Chung DC, Ngoc PK (2011) Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells. In Vitro Cell Dev Biol Anim 47:54–63

    Article  CAS  PubMed  Google Scholar 

  • Phuc PV, Ngoc VB, Lam DH, Tam NT, Viet PQ, Ngoc PK (2012) Isolation of three important types of stem cells from the same samples of banked umbilical cord blood. Cell Tissue Bank 13:341–351

    Article  CAS  PubMed  Google Scholar 

  • Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V et al (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80:836–842

    Article  PubMed  Google Scholar 

  • Puangpetch A, Suwannarat P, Chamnanphol M, Koomdee N, Ngamsamut N, Limsila P, Sukasem C (2015) Significant association of HLA-B alleles and genotypes in Thai children with autism spectrum disorders: a case-control study. Dis Markers 2015:724935

    Article  PubMed  PubMed Central  Google Scholar 

  • Purton LE, Mielcarek M, Torok-Storb B (1998) Monocytes are the likely candidate ‘stromal’ cell in G-CSF-mobilized peripheral blood. Bone Marrow Transplant 21:1075–1076

    Article  CAS  PubMed  Google Scholar 

  • Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110

    Article  PubMed  Google Scholar 

  • Roord ST, de Jager W, Boon L, Wulffraat N, Martens A, Prakken B, van Wijk F (2008) Autologous bone marrow transplantation in autoimmune arthritis restores immune homeostasis through CD4 + CD25 + Foxp3+ regulatory T cells. Blood 111:5233–5241

    Article  CAS  PubMed  Google Scholar 

  • Rushkevich YN, Kosmacheva SM, Zabrodets GV, Ignatenko SI, Goncharova NV, Severin IN, Likhachev SA, Potapnev MP (2015) The use of autologous mesenchymal stem cells for cell therapy of patients with amyotrophic lateral sclerosis in Belarus. Bull Exp Biol Med 159:576–581

    Article  CAS  PubMed  Google Scholar 

  • Rylova YV, Milovanova NV, Gordeeva MN, Savilova AM (2015) Characteristics of multipotent mesenchymal stromal cells from human terminal placenta. Bull Exp Biol Med 159:253–257

    Article  CAS  PubMed  Google Scholar 

  • Scattoni ML, Martire A, Cartocci G, Ferrante A, Ricceri L (2013) Reduced social interaction, behavioural flexibility and BDNF signalling in the BTBR T+ tf/J strain, a mouse model of autism. Behav Brain Res 251:35–40

    Article  CAS  PubMed  Google Scholar 

  • Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J (2007) Strong association of de novo copy number mutations with autism. Science 316:445–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segal-Gavish H, Karvat G, Barak N, Barzilay R, Ganz J, Edry L, Aharony I, Offen D, Kimchi T (2016) Mesenchymal stem cell transplantation promotes neurogenesis and ameliorates autism related behaviors in BTBR mice. Autism Res 9:17–32

    Article  PubMed  Google Scholar 

  • Sharma A, Badhe P, Gokulchandran N, Kulkarni P, Mishra P, Shetty A, Sane H (2013a) An improved case of autism as revealed by PET CT scan in patient transplanted with autologous bone marrow derived mononuclear cells. J Stem Cell Res Ther 2013

    Google Scholar 

  • Sharma A, Gokulchandran N, Sane H, Nagrajan A, Paranjape A, Kulkarni P, Shetty A, Mishra P, Kali M, Biju H et al (2013b) Autologous bone marrow mononuclear cell therapy for autism: an open label proof of concept study. Stem Cells Int 2013:623875

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Gokulchandran N, Sane H, Patil A, Shetty A, Biju H, Kulkarni P, Badhe P (2015) Amelioration of autism by autologous bone marrow mononuclear cells and neurorehabilitation: a case report. Am J Med Case Rep 3:304–309

    Google Scholar 

  • Sharma A, Sane H, Gokulchandran N, Badhe P, Patil A (2016) PET-CT scan shows decreased severity of autism after autologous cellular therapy: a case report. Autism Open Access 6:2

    Article  Google Scholar 

  • Singh VK, Warren RP, Odell JD, Warren WL, Cole P (1993) Antibodies to myelin basic protein in children with autistic behavior. Brain Behav Immun 7:97–103

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Lin SX, Yang VC (1998) Serological association of measles virus and human herpesvirus-6 with brain autoantibodies in autism. Clin Immunol Immunopathol 89:105–108

    Article  CAS  PubMed  Google Scholar 

  • Son MY, Lee MO, Jeon H, Seol B, Kim JH, Chang JS, Cho YS (2016) Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease. Exp Mol Med 48, e232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24:74–85

    Article  PubMed  Google Scholar 

  • Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490

    Article  CAS  PubMed  Google Scholar 

  • Sunwoo MK, Yun HJ, Song SK, Ham JH, Hong JY, Lee JE, Lee HS, Sohn YH, Lee JM, Lee PH (2014) Mesenchymal stem cells can modulate longitudinal changes in cortical thickness and its related cognitive decline in patients with multiple system atrophy. Front Aging Neurosci 6:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Todd RD, Hickok JM, Anderson GM, Cohen DJ (1988) Antibrain antibodies in infantile autism. Biol Psychiatry 23:644–647

    Article  CAS  PubMed  Google Scholar 

  • Torres AR, Maciulis A, Stubbs EG, Cutler A, Odell D (2002) The transmission disequilibrium test suggests that HLA-DR4 and DR13 are linked to autism spectrum disorder. Hum Immunol 63:311–316

    Article  CAS  PubMed  Google Scholar 

  • Torres AR, Sweeten TL, Cutler A, Bedke BJ, Fillmore M, Stubbs EG, Odell D (2006) The association and linkage of the HLA-A2 class I allele with autism. Hum Immunol 67:346–351

    Article  CAS  PubMed  Google Scholar 

  • Torres AR, Westover JB, Gibbons C, Johnson RC, Ward DC (2012) Activating killer-cell immunoglobulin-like receptors (KIR) and their cognate HLA ligands are significantly increased in autism. Brain Behav Immun 26:1122–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyndall A, Black C, Finke J, Winkler J, Mertlesmann R, Peter HH, Gratwohl A (1997) Treatment of systemic sclerosis with autologous haemopoietic stem cell transplantation. Lancet 349:254

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Li J, Zhang Y, Zhang M, Chen J, Li X, Hu X, Jiang S, Shi S, Sun L (2014) Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther 16:R79

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan SX, Deng XM, Wei W (2013) A big step forward in the treatment of refractory systemic lupus erythematosus: allogenic mesenchymal stem cell transplantation. Acta Pharmacol Sin 34:453–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zand MS, Vo T, Pellegrin T, Felgar R, Liesveld JL, Ifthikharuddin JJ, Abboud CN, Sanz I, Huggins J (2006) Apoptosis and complement-mediated lysis of myeloma cells by polyclonal rabbit antithymocyte globulin. Blood 107:2895–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Ge W, Li C, You S, Liao L, Han Q, Deng W, Zhao RC (2004) Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 13:263–271

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Liu R, Shi D, Liu X, Chen Y, Dou X, Zhu X, Lu C, Liang W, Liao L et al (2009) Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood 113:46–57

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by Regenmedlab Co. Ltd (Ho Chi Minh city, Viet Nam) under grant “Research on stem cell transplantation for autism treatment from preclinical to clinical trials”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Van Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Van Pham, P. (2017). Stem Cell Therapy for Autism. In: Pham, P. (eds) Neurological Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33720-3_7

Download citation

Publish with us

Policies and ethics