Skip to main content

Stem Cell-Based Therapies for Parkinson’s Disease

  • Chapter
  • First Online:
Neurological Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the progressive death of dopaminergic neurons (DAn) in the substantia nigra pars compacta (SNpc). The primary motor symptoms include tremors, rigidity and bradykinesia. Current treatments for PD are only symptomatic and do not prevent disease progression. In recent years, stem cells have become an attractive option to investigate and treat PD. In fact, transplants of fetal ventral mesencephalic cells (which are rich in dopaminergic neuroblasts) have provided proof of concept that cell replacement therapy may be a good option for improving motor symptoms in some PD patients. Although its widespread clinical use is still not possible due to ethical aspects and limited availability of tissue. It is therefore necessary to find alternative cellular sources such as stem cells. Stem cell therapies may exert their action through several mechanisms such as cell replacement, trophic and immunomodulatory actions. In this book chapter we summarize the most recent and relevant clinical studies based on cell therapy for PD treatment. We provide an overview of the different types of human stem cells available, their main properties and how they are being used as a possible therapy for the treatment of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott A (2014) Fetal-cell revival for Parkinson’s. Nature 510(7504):195–196

    Article  CAS  PubMed  Google Scholar 

  • Abumaree MH, Al Jumah MA, Kalionis B et al (2013) Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev 9(5):620–641

    Article  CAS  PubMed  Google Scholar 

  • Arenas E (2010) Towards stem cell replacement therapies for Parkinson’s disease. Biochem Biophys Res Commun 396(1):152–156

    Article  CAS  PubMed  Google Scholar 

  • Barker RA, Barrett J, Mason SL et al (2013) Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol 12(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • Barker RA, Parmar M, Kirkeby A et al (2016) Are Stem cell-based therapies for Parkinson’s disease ready for the clinic in 2016? J Parkinson Dis 6(1):57–63

    Article  Google Scholar 

  • Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11(4):268–277

    Article  CAS  PubMed  Google Scholar 

  • Bernal JA (2013) RNA-based tools for nuclear reprogramming and lineage-conversion: towards clinical applications. J Cardiovasc Transl 6(6):956–968

    Article  Google Scholar 

  • Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202

    Article  PubMed  CAS  Google Scholar 

  • Bongso A, Fong CY, Gauthaman K (2008) Taking stem cells to the clinic: major challenges. J Cell Biochem 105(6):1352–1360

    Article  CAS  PubMed  Google Scholar 

  • Bonnamain V, Neveu I, Naveilhan P (2012) Neural stem/progenitor cells as a promising candidate for regenerative therapy of the central nervous system. Front Cell Neurosci 6(17):1–8

    Google Scholar 

  • Brundin P, Strecker RE, Clarke DJ et al (1988) Can human fetal dopamine neuron grafts provide a therapy for Parkinson’s disease? Prog Brain Res 78:441–448

    Article  CAS  PubMed  Google Scholar 

  • Buttery PC, Barker RA (2014) Treating Parkinson’s disease in the 21st century: can stem cell transplantation compete? J Comp Neurol 522(12):2802–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacci E, Villa A, Parmar M et al (2007) Generation of human cortical neurons from a new immortal fetal neural stem cell line. Exp Cell Res 313(3):588–601

    Article  CAS  PubMed  Google Scholar 

  • Caiazzo M, Dell’Anno MT, Dvoretskova E et al (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476(7359):224–227

    Article  CAS  PubMed  Google Scholar 

  • Carta M, Carlsson T, Muñoz A et al (2008) Serotonin-dopamine interaction in the induction and maintenance of L-DOPA-induced dyskinesias. Prog Brain Res 172:465–478

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain G, Fox J, Ashton B et al (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    Article  CAS  PubMed  Google Scholar 

  • Chambers SM, Fasano CA, Papapetrou EP et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang KA, Lee JH, Suh YH (2014) Therapeutic potential of human adipose-derived stem cells in neurological disorders. J Pharmacol Sci 126:293–301

    Article  CAS  PubMed  Google Scholar 

  • Cho MS, Hwang DY, Kim DW (2008) Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale. Nat Protoc 3(12):1888–1894

    Article  CAS  PubMed  Google Scholar 

  • Chun SY, Soker S, Jang YJ et al (2016) Differentiation of human dental pulp stem cells into dopaminergic neuron-like cells in vitro. J Korean Med Sci 31:171–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins E, Gu F, Qi M et al (2014) Differential efficacy of human mesenchymal stem cells based on source of origin. J Immunol 193(9):4381–4390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condic ML, Rao M (2010) Alternative sources of pluripotent stem cells: ethical and scientific issues revisited. Stem Cells Dev 19(8):1121–1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Courtois ET, Castillo CE, Seiz EC et al (2010) In vitro and in vivo enhanced generation of human A9 dopaminergic neurons from neural stem cells by BCL-XL. J Biol Chem 285(13):9881–9897

    Google Scholar 

  • Dezawa M, Kanno H, Hoshino M et al (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113(12):1701–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drouin-Ouellet J, Barker RA (2014) Stem cell therapies for Parkinson’s disease: are trials just around the corner? Regen Med 9(5):553–555

    Article  CAS  PubMed  Google Scholar 

  • Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109(1):235–242

    Article  CAS  PubMed  Google Scholar 

  • Freed CR, Breeze RE, Rosenberg NL et al (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med 327(22):1549–1555

    Article  CAS  PubMed  Google Scholar 

  • Freed CR, Greene PE, Breeze RE et al (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344(10):710–719

    Article  CAS  PubMed  Google Scholar 

  • Freed CR, Zhou W, Breeze RE (2011) Dopamine cell transplantation for Parkinson’s disease: the importance of controlled clinical trials. Neurotherapeutics 8(4):549–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X, Xu Y (2012) Challenges to the clinical application of pluripotent stem cells: towards genomic and functional stability. Genome Med 4(6):55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganz J, Lev N, Melamed E et al (2011) Cell replacement therapy for Parkinson’s disease: how close are we to the clinic? Expert Rev Neurother 11(9):1325–1339

    Article  PubMed  Google Scholar 

  • Garber K (2013) Inducing translation. Nat Biotechnol 31(6):483–486

    Article  CAS  PubMed  Google Scholar 

  • Glavaski-Joksimovic A, Bohn MC (2013) Mesenchymal stem cells and neuroregeneration in Parkinson’s disease. Exp Neurol 247:25–38

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez C, Bonilla S, Flores AI et al (2015a) An update on human stem cell-based therapy in Parkinsons disease. Curr Stem Cell Res Ther. PMID: 260276

    Google Scholar 

  • Gonzalez R, Garitaonandia I, Crain A et al (2015b) Proof of concept studies exploring the safety and functional activity of human parthenogenetic-Derived Neural Stem Cells for the treatment of Parkinsons disease. Cell Transplant 4:681–690

    Article  Google Scholar 

  • Grealish S, Diguet E, Kirkeby A et al (2014) Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15:653–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronthos S, Mankani M, Brahim J et al (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagell P, Piccini P, Björklund A et al (2002) Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 5(7):627–628

    CAS  PubMed  Google Scholar 

  • Hallett PJ, Cooper O, Sadi D et al (2014) Long-term health of dopaminergic neuron transplants in Parkinson’s disease patients. Cell Rep 7(6):1755–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy SA, Maltman DJ, Przyborski SA (2008) Mesenchymal stem cells as mediators of neural differentiation. Curr Stem Cell Res Ther 3(1):43–52

    Article  CAS  PubMed  Google Scholar 

  • Hargus G, Cooper O, Deleidi M et al (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 107(36):15921–15926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Wakao S, Kitada M et al (2013) Autologous mesenchymal stem-cell derived dopaminergic neurons function in parkisonina macaques. J Clin Invest 123:272–284

    Article  CAS  PubMed  Google Scholar 

  • Heumann R, Moratalla R, Herrero MT et al (2014) Dyskinesia in Parkinson’s disease: mechanisms and current non-pharmacological interventions. J Neurochem 30(4):472–489

    Article  CAS  Google Scholar 

  • Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(1 Suppl):S210–S212

    Google Scholar 

  • Hoch AI, Binder BY, Genetos DC et al (2012) Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells. PLoS One 7(4), e35579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höglinger GU, Rizk P, Muriel MP et al (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7(7):726–735

    Article  PubMed  CAS  Google Scholar 

  • Isacson O, Bjorklund LM, Schumacher JM (2003) Toward full restoration of synaptic and terminal function of the dopaminergic system in Parkinson’s disease by stem cells. Ann Neurol 53(3 Suppl):S135–S146

    Google Scholar 

  • Joyce N, Annett G, Wirthlin L et al (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5(6):933–946

    Article  PubMed  PubMed Central  Google Scholar 

  • Kallur T, Darsalia V, Lindvall O et al (2006) Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. J Neurosci Res 84(8):1630–1644

    Article  CAS  PubMed  Google Scholar 

  • Kefalopoulou Z, Politis M, Piccini P et al (2014) Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol 71(1):83–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1997) Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci U S A 94(19):10409–10414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, McMillan E, Han F et al (2009a) Regionally specified human neural progenitor cells derived from the mesencephalon and forebrain undergo increased neurogenesis following overexpression of ASCL1. Stem Cells 27(2):390–398

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Park HJ, Lee G et al (2009b) Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia 57:13–23

    Article  PubMed  Google Scholar 

  • Kirkeby A, Grealish S, Wolf DA et al (2012) Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep 1(6):703–714

    Article  CAS  PubMed  Google Scholar 

  • Kirkeby A, Nelander J, Parmar M (2013) Generating regionalized neuronal cells from pluripotency, a step-by-step protocol. Front Cell Neurosci 6:64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitada M, Dezawa M (2012) Parkinson’s disease and mesenchymal stem cells: potential for cell-based therapy. Parkinsons Dis 2012:873706

    PubMed  PubMed Central  Google Scholar 

  • Kordower JH, Chu Y, Hauser RA et al (2008) Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov Disord 23(16):2303–2306

    Article  PubMed  Google Scholar 

  • Kriks S, Shim JW, Piao J et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Dudal S, Sundari AT et al (2016) Dopaminergic-primed fetal liver mesenchymal stromal-like cells can reverse parkinsonian symptoms in 6-hydroxydopamine-lesioned mice. Cytotherapy 18:307–319

    Article  CAS  PubMed  Google Scholar 

  • Larson PS (2014) Deep brain stimulation for movement disorders. Neurotherapeutics 11(3):465–474

    Article  PubMed  PubMed Central  Google Scholar 

  • Lévesque MF, Neuman T, Rezak M (2009) Therapeutic microinjection of autologous adult human neural stem cells and differentiated neurons for Parkinson’s disease: five-year post-operative outcome. Open Stem Cell J 1:20–29

    Article  Google Scholar 

  • Li JY, Englund E, Widner H et al (2010) Characterization of Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson’s disease. Mov Disord 25(8):1091–1096

    Article  PubMed  Google Scholar 

  • Lindvall O (2016) Clinical translation of stem cell transplantation in Parkinson’s disease. J Intern Med 279(1):30–40

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z (2009) Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci 30(5):260–267

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Brundin P, Widner H et al (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247(4942):574–577

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Sawle G, Winder H et al (1994) Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol 35(2):172–180

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Barker RA, Brüstle O et al (2012) Clinical translation of stem cells in neurodegenerative disorders. Cell Stem Cell 10(2):151–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liste I, García-García E, Martínez-Serrano A (2004) The generation of dopaminergic neurons by human neural stem cells is enhanced by Bcl-XL, both in vitro and in vivo. J Neurosci 24(48):10786–10795

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Pelizzola M, Kida YS et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotharius J, Barg S, Wiekop P et al (2002) Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem 277(41):38884–38894

    Article  CAS  PubMed  Google Scholar 

  • Lunn JS, Sakowski SA, Hur J et al (2011) Stem cell technology for neurodegenerative diseases. Ann Neurol 70(3):353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macias MI, Grande J, Moreno A et al (2010) Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers. Am J Obstet Gynecol 203(5):495.e9–495.e23

    Google Scholar 

  • Malmersjö S, Liste I, Dyachok O et al (2010) Ca2+ and cAMP signaling in human embryonic stem cell-derived dopamine neurons. Stem Cells Dev 19(9):1355–1364

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Morales PL, Liste I (2012) Stem cells as in vitro model of Parkinson’s disease. Stem Cells Int 2012:980941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-Morales PL, Revilla A, Ocaña I et al (2013) Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev 9(5):685–699

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Serrano A, Liste I (2010) Recent progress and challenges for the use of stem cell derivatives in neuron replacement therapy of Parkinson’s disease. Fut Neurol 5:161–165

    Article  Google Scholar 

  • Masuda S, Wu J, Hishida T et al (2013) Chemically induced pluripotent stem cells (CiPSCs): a transgene-free approach. J Mol Cell Biol 5(5):354–355

    Article  CAS  PubMed  Google Scholar 

  • Mathieu P, Roca V, Gamba C et al (2012) Neuroprotective effects of human umbilical cord mesenchymal stromal cells in an immunocompetent animal model of Parkinson’s disease. J Neuroimmunol 246(1-2):43–50

    Article  CAS  PubMed  Google Scholar 

  • McCoy MK, Martinez TN, Ruhn KA et al (2008) Autologous transplants of Adipose-Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson’s disease. Exp Neurol 210(1):14–29

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23(4):474–483

    Article  PubMed  Google Scholar 

  • Moore SF, Guzman NV, Mason SL et al (2014) Which patients with Parkinson’s disease participate in clinical trials? One centre’s experiences with a new cell based therapy trial (TRANSEURO). J Parkinsons Dis 4(4):671–676

    PubMed  Google Scholar 

  • More SV, Kumar H, Kim IS et al (2013) Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators Inflamm 2013:952375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morizone A, Takahashi J (2016) Cell therapy for Parkinson’s disease. Neurol Med Chir 56:102–109

    Article  Google Scholar 

  • Ng TK, Fortino VR, Pelaez D et al (2014) Progress of mesenchymal stem cell therapy for neural and retinal diseases. World J Stem Cells 6(2):111–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen HN, Byers B, Cord B et al (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8:267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olanow CW, Goetz CG, Kordower JH et al (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54(3):403–414

    Article  PubMed  Google Scholar 

  • Paldino E, Cenciarelli C, Giampaolo A et al (2014) Induction of dopaminergic neurons from human Wharton’s jelly mesenchymal stem cell by forskolin. J Cell Physiol 229(2):232–244

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kim E, Koh SE et al (2012) Dopaminergic differentiation of neural progenitors derived from placental mesenchymal stem cells in the brains of Parkinson’s disease model rats and alleviation of asymmetric rotational behavior. Brain Res 1466:158–166

    Article  CAS  PubMed  Google Scholar 

  • Pasi CE, Dereli-Oz A, Negrini S et al (2011) Genomic instability in induced stem cells. Cell Death Diff 18(5):745–753

    Article  CAS  Google Scholar 

  • Paul G, Anisimov SV (2013) The secretome of mesenchymal stem cells: potential implications for neurodegeneration. Biochimie 95:2246–2256

    Article  CAS  PubMed  Google Scholar 

  • Paul G, Özen I, Christophersen NS et al (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cell. PLoS One 7(4):e35577

    Google Scholar 

  • Peschanski M, Defer G, N’Guyen JP et al (1994) Bilateral motor improvement and alteration of L-dopa effect in two patients with Parkinson’s disease following intrastriatal transplantation of fetal ventral mesencephalon. Brain 117:487–499

    Google Scholar 

  • Petit GH, Olsson TT, Brundin P (2014) The future of cell therapies and brain repair: Parkinson’s disease leads the way. Neuropathol Appl Neurobiol 40(1):60–70

    Article  CAS  PubMed  Google Scholar 

  • Pfisterer U, Kirkeby A, Torper O et al (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108(25):10343–10348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phanstiel DH, Brumbaugh J, Wenger CD et al (2011) Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat Methods 8(10):821–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccini P, Brooks DJ, Björklund A et al (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2(12):1137–1140

    Article  CAS  PubMed  Google Scholar 

  • Piccini P, Pavese N, Hagell P et al (2005) Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain 128(12):2977–2986

    Article  PubMed  Google Scholar 

  • Piquet AL, Venkiteswaran K, Marupudi NI et al (2012) The immunological challenges of cell transplantation for the treatment of Parkinson’s disease. Brain Res Bull 88(4):320–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poewe W (2009) Treatments for Parkinson disease-past achievements and current clinical needs. Neurology 72(7 Suppl):S65–S73

    Article  CAS  PubMed  Google Scholar 

  • Politis M, Wu K, Loane C et al (2010) Depressive symptoms in PD correlate with higher 5-HTT binding in raphe and limbic structures. Neurology 75(21):1920–1927

    Article  CAS  PubMed  Google Scholar 

  • Politis M, Wu K, Loane C et al (2014) Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients. J Clin Invest 124(3):1340–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prashanth LK, Fox S, Meissner WG (2011) L-Dopa-induced dyskinesia-clinical presentation, genetics, and treatment. Int Rev Neurobiol 98:31–54

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Moreno T, Lendínez JG, Pino-Barrio MJ et al (2012) Clonal human fetal ventral mesencephalic dopaminergic neuron precursors for cell therapy research. PLoS One 7(12), e52714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rath A, Klein A, Papazoglou A et al (2013) Survival and functional restoration of human fetal ventral mesencephalon following transplantation in a rat model of Parkinson’s disease. Cell Transplant 22(7):1281–1293

    Article  PubMed  Google Scholar 

  • Revazova ES, Turovets NA, Kochetkova OD et al (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9:432–449

    Article  CAS  PubMed  Google Scholar 

  • Revilla A, González C, Iriondo A et al (2015) Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine. J Tissue Eng Regen Med. doi:10.1002/term.2021

    PubMed  Google Scholar 

  • Ribeiro D, Laguna Goya R, Ravindran G et al (2013) Efficient expansion and dopaminergic differentiation of human fetal ventral midbrain neural stem cells by midbrain morphogens. Neurobiol Dis 49:118–127

    Article  CAS  PubMed  Google Scholar 

  • Ryan JM, Barry FP, Murphy JM et al (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm 26:2–8

    Google Scholar 

  • Sánchez-Danés A, Richaud-Patin Y, Carballo-Carbajal I et al (2012) Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med 4(5):380–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Satija NK, Singh VK, Verma YK et al (2009) Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. J Cell Mol Med 13(11-12):4385–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savitt JM, Dawson VL, Dawson TM (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 116(7):1744–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz J, Storch A (2010) Transplantation in Parkinson’s disease: will mesenchymal stem cells help to reenter the clinical arena? Transl Res 155(2):55–56

    Article  PubMed  Google Scholar 

  • Schwerk A, Altschuler J, Roch M et al (2015) Human adipose-derived mesenchymal stromal cells increase endogenous neurogenesis in the rat subventricular zone acutely after 6-hydroxydopamine lesioning. Cytotherapy 17:199–214

    Article  CAS  PubMed  Google Scholar 

  • Siniscalco D, Giordano C, Galderisi U et al (2010) Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cell Mol Life Sci 67(4):655–669

    Article  CAS  PubMed  Google Scholar 

  • Soldner F, Hockemeyer D, Bear C et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer DD, Robbins RJ, Naftolin F et al (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N Engl J Med 327(22):1541–1548

    Article  CAS  PubMed  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J et al (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Tate CC, Fonck C, McGrogan M et al (2010) Human mesenchymal stromal cells and their derivative, SB623 cells, rescue neural cells via trophic support following in vitro ischemia. Cell Transplant 19(8):973–984

    Article  PubMed  Google Scholar 

  • Teixeira FG, Carvalho MM (2013) Mesenchymal stem cell secretome: a new paradigm for central nervous system tegeneration? Cell Mol Life Sci 70:3871–3882

    Article  CAS  PubMed  Google Scholar 

  • Teo GS, Ankrum JA, Martinelli R et al (2012) Mesenchymal stem cells transmigrate between and directly through tumor necrosis factor-α-activated endothelial cells via both leukocyte-like and novel mechanisms. Stem Cells 30(11):2472–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Trounson A, Pera M (2001) Human embryonic stem cells. Fertil Steril 76(4):660–661

    Article  CAS  PubMed  Google Scholar 

  • Trzaska KA, Rameshwar P (2011) Dopaminergic neuronal differentiation protocol for human mesenchymal stem cells. Methods Mol Biol 698:295–303

    Article  CAS  PubMed  Google Scholar 

  • Van den Berge SA, van Strien ME, Korecka JA et al (2011) The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain 134(11):3249–3263

    Article  PubMed  Google Scholar 

  • Van den Berge SA, van Strien ME, Hol EM (2013) Resident adult neural stem cells in Parkinson’s disease-the brain’s own repair system? Eur J Pharmacol 719(1-3):117–127

    Article  PubMed  CAS  Google Scholar 

  • Vegh I, Grau M, Gracia M et al (2013) Decidua mesenchymal stem cells migrated toward mammary tumors in vitro and in vivo affecting tumor growth and tumor development. Cancer Gene Ther 20(1):8–16

    Article  CAS  PubMed  Google Scholar 

  • Venkataramana NK, Kumar SKV, Balaraju S et al (2009) Open-label study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 155(2):62–70

    Article  PubMed  CAS  Google Scholar 

  • Villa A, Liste I, Courtois ET et al (2009) Generation and properties of a new human ventral mesencephalic neural stem cell line. Exp Cell Res 315(11):1860–1874

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Liu Y, Zhou J (2015) Neuroinflammation in Parkinson’s disease and its potential as therapeutic agent. Transl Neurodegen 4:1–9

    Article  Google Scholar 

  • Widner H, Tetrud J, Rehncrona S et al (1992) Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N Engl J Med 327(22):1556–1563

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Huang C, Gu P, Wen T (2015) Combined MSC secreted factors and neural stem cell transplantation promote functional recovery in PD rats. Cell Transplant. PMID: 26607204

    Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Zhan D, Kilian KA (2013) The effect of mesenchymal stem cell shape on the maintenance of multipotency. Biomaterials 34(16):3962–3969

    Article  CAS  Google Scholar 

  • Zhou H, Wu S, Joo JY et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in our laboratory was funded by the MICINN-ISCIII (PI-10/00291 and MPY1412/09), MINECO (SAF2015-71140-R) and Comunidad Autónoma de Madrid (NEUROSTEMCM consortium; S2010/BMD-2336).

Conflict of Interest

The authors confirm that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Liste PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Palmer, C., Liste, I. (2017). Stem Cell-Based Therapies for Parkinson’s Disease. In: Pham, P. (eds) Neurological Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33720-3_5

Download citation

Publish with us

Policies and ethics