Skip to main content

The Uses of Somatic Embryogenesis for Genetic Transformation

  • Chapter
  • First Online:
Somatic Embryogenesis: Fundamental Aspects and Applications

Abstract

Direct or indirect somatic embryogenesis protocols used for efficient Agrobacterium-, particle bombardment-, and chemical-mediated genetic transformation are revised in this chapter. Reported protocols for genetic transformation of important annual crops (corn, sorghum, rice, soybean, wheat, and sugarcane, among others) as well as perennials (Pinus, Picea, Vitis, Hevea, citrus, coffee, and several more), model plants (Nicotiana and Daucus), or pharmacologically attractive plants (opium poppy) are summarized. In general, a description of protocols developed with vectors bearing reporter and selectable gene markers is presented, and also the integration and expression of foreign genes for the protection of plant species against viruses, bacteria, fungi, and insects, or to enhance tolerance to herbicide or salt, and for producing recombinant proteins are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Athmaram TN, Bali G, Devaiah KM (2006) Integration and expression of Bluetongue VP2 gene in somatic embryos of peanut through particle bombardment method. Vaccine 24:2994–3000. doi:10.1016/j.vaccine.2005.11.019

    Article  CAS  PubMed  Google Scholar 

  • Belmonte MK, Tahir M, Schroder D, Stasolla C (2007) Overexpression of HBK3, a class I KONOX homeobox gene, improves the development of Norway spruce (Picea abies) somatic embryos. J Exp Bot 58:2851–2861. doi:10.1093/jxb/erm099

    Article  CAS  PubMed  Google Scholar 

  • Bevitori R, Popielarska-Konieczna M, dos Santos EM et al (2014) Morpho-anatomical characterization of mature embryo-derived callus of rice (Oryza sativa L.) suitable for transformation. Protoplasma 251:545–554. doi:10.1007/s00709-013-0553-4

    CAS  PubMed  Google Scholar 

  • Blanc G, Baptiste C, Oliver G et al (2006) Efficient Agrobacterium tumefaciens-mediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Müll Ar. Plants. Plant Cell Rep 24:724–733. doi:10.1007/s00299-005-0023-3

    Article  CAS  PubMed  Google Scholar 

  • Blaydes DF (1966) Interaction of kinetin and various inhibitors in the growth of soybean tissues. Physiol Plant 19:748–753. doi:10.1111/j.1399-3054.1966.tb07060.x

    Article  CAS  Google Scholar 

  • Charity JA, Holland L, Grace LJ, Walter C (2005) Consistent and stable expression of the nptII, uidA and bar genes in transgenic Pinus radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures. Plant Cell Rep 23:606–616. doi:10.1007/s00299-004-0851-6

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary B, Kumar S, Prasad KVSK et al (2003) Slow desiccation leads to high-frequency shoot recovery from transformed somatic embryos of cotton (Gossypium hirsutum L. cv. Coker 310 FR). Plant Cell Rep 21:955–960. doi:10.1007/s00299-003-0613-x

    Article  CAS  PubMed  Google Scholar 

  • Chu CC, Wang CC, Sun CS et al (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668

    Google Scholar 

  • Corredoira E, Valladares S, Allona I et al (2012) Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds. Tree Physiol 32:1389–1402. doi:10.1093/treephys/tps098

    Article  CAS  PubMed  Google Scholar 

  • Deng XY, Wei ZM, An HL (2001) Transgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system. Cell Res 11:156–160. doi:10.1038/sj.cr.7290081

    Article  CAS  PubMed  Google Scholar 

  • Dhekney SA, Li ZT, Dutt M, Gray DJ (2008) Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape). Plant Cell Rep 27:865–872. doi:10.1007/s00299-008-0512-2

    Article  CAS  PubMed  Google Scholar 

  • Driver JA, Kuniyuki AN (1984) In vitro propagation of Paradox walnut rootstock. Hortic Sci 19:507–509

    Google Scholar 

  • Dutt M, Grosser JW (2010) An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus. Plant Cell Rep 29:1251–1260. doi:10.1007/s00299-010-0910-0

    Article  CAS  PubMed  Google Scholar 

  • Facchini PJ, Loukanina N, Blanche V (2008) Genetic transformation via somatic embryogenesis to establish herbicide-resistant opium poppy. Plant Cell Rep 27:719–727. doi:10.1007/s00299-007-0483-8

    Article  CAS  PubMed  Google Scholar 

  • Fu G, Grbic V, Ma S, Tian L (2015) Evaluation of somatic embryos of alfalfa for recombinant protein expression. Plant Cell Rep 34:211–221. doi:10.1007/s00299-014-1700-x

    Article  CAS  PubMed  Google Scholar 

  • Gamborg O, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cell. Exp Cell Res 50:151–158. doi:10.1016/0014/-4827(68)90403-5

    Article  CAS  PubMed  Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK et al (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo pertellus). Plant Cell Rep 24:513–522. doi:10.1007/s00299-005-0947-7

    Article  CAS  PubMed  Google Scholar 

  • Greer MS, Kovalchuk I, Eudes F (2009) Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation of Triticum aestivum. New Biotechnol 26:44–52. doi:10.1016/j.nbt.2009.02.003

    Article  CAS  Google Scholar 

  • Guo W, Duan Y, Olivares-Fuster O et al (2005) Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene. Plant Cell Rep 24:482–486. doi:10.1007/s00299-005-0952-x

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-S, Kim M-Y, Kim T-G, Yang M-S (2009) Expression and assembly of cholera toxin B subunit (CTB) in transgenic carrot (Daucus carota). Mol Biotechnol 41:8–14. doi:10.1007/s12033-008-9086-z

    Article  CAS  PubMed  Google Scholar 

  • Kita Y, Nishizawa K, Takahashi M et al (2007) Genetic improvement of the somatic embryogenesis and regeneration in soybean and transformation of the improved breeding lines. Plant Cell Rep 26:439–447. doi:10.1007/s00299-006-0245-z

    Article  CAS  PubMed  Google Scholar 

  • Ko T-S, Lee S, Krasnyanski S, Korban SS (2003) Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant. Theor Appl Genet 107:439–447. doi:10.1007/s00122-003-1264-6

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dhinagra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854. doi:10.1104/pp.104.045187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kung Y-J, Yu T-A, Huang C-H et al (2010) Generation of hermaphrodite transgenic papaya lines with virus resistance via transformation of somatic embryos derived from adventitious roots of in vitro shoots. Transgenic Res 19:621–635. doi:10.1007/s11248-009-9344-2

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:437–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  Google Scholar 

  • Murashige T, Tucker DP (1969) Growth factor requirements of citrus tissue culture. Proc 1st Int Citrus Symp, pp 1155–1161

    Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87. doi:10.1126/science.163.3862.85

    Article  CAS  PubMed  Google Scholar 

  • Nyaboga EN, Njiru JM, Tripathi L (2015) Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Cranz) cultivar TME14

    Google Scholar 

  • Okamura M, Kondo T (1995) Manual for tissue culture of pine. Bull Natl For Tree Breed Center 13:139–142

    Google Scholar 

  • Pathi KM, Tula S, Tuteja N (2013) High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium-mediated genetic transformation of tobacco. Plant Signal Behav 8:6. doi:10.4161/psb.24354

    Google Scholar 

  • Ribas AF, Dechamp E, Champion A et al (2011) Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biol 11:92. doi:10.1186/1471-2229-11-92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sairam RV, Parani M, Franklin G et al (2003) Shoot meristem: an ideal explant for Zea mays L. transformation. Genome 46:323–329

    Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204. doi:10.1139/b72-026

    Article  CAS  Google Scholar 

  • Smith DR (1996) Growth medium. US Patent No 5,565,355

    Google Scholar 

  • Snyman SJ, Meyer GM, Richards JM et al (2006) Refining the application of direct embryogenesis in sugarcane: effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency. Plant Cell Rep 25:1016–1023. doi:10.1007/s00299-006-0148-z

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi T, Ohmiya Y, Kurita M et al (2008) Regeneration of transgenic Cryptomeria japonica D. Don after Agrobacterium tumefaciens-mediated transformation on embryogenic tissue. Plant Cell Rep 27:1461–1466. doi:10.1007/s00299-008-0569-y

    Article  CAS  PubMed  Google Scholar 

  • Tapia E, Sequeida A, Castro A et al (2009) Development of grapevine somatic embryogenesis using an air-lift bioreactor as an efficient tool in the generation of transgenic plants. J Biotechnol 139:95–101. doi:10.1016/j.jbiotec.2008.09.009

    Article  CAS  PubMed  Google Scholar 

  • White PR (1967) Plant cell and tissue culture. In: Wilt FH, Wessels NK (eds) Methods in developmental biology. Thomas Y. Crowell, New York, pp 555–564

    Google Scholar 

  • Yang J, Bi H-P, Fan W-J et al (2011) Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.). Plant Sci 181:701–711. doi:10.1016/j.plantsci.2011.01.005

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neftalí Ochoa-Alejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ochoa-Alejo, N. (2016). The Uses of Somatic Embryogenesis for Genetic Transformation. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Somatic Embryogenesis: Fundamental Aspects and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33705-0_23

Download citation

Publish with us

Policies and ethics