Skip to main content

Direct and Indirect Somatic Embryogenesis in Mango Ginger (Curcuma amada Roxb.)

  • Chapter
  • First Online:
Somatic Embryogenesis: Fundamental Aspects and Applications

Abstract

Somatic embryogenesis is a developmental restructuring of somatic cells in the embryogenic pathway and forms a basis for the concept of totipotency in plant cells. Understanding the process of transition from vegetative to embryogenic cells and factors involved in the somatic embryogenesis and subsequent plant development represents a challenge for plant tissue culture studies in any selected species. Although several reviews have been published dealing somatic embryogenesis in several plant species, there is no recent information on somatic embryogenesis in mango ginger (Curcuma amada). Two different types of somatic embryogenetic pathways are available in mango ginger. They are indirect somatic embryogenesis (IDSE) and direct somatic embryogenesis (DSE). Indirect somatic embryogenesis occurs in friable embryogenic callus from leaf sheath explants that undergo an extreme proliferation before the development of somatic embryos, whereas in the direct somatic embryogenesis, two-step system of culture was followed. Initially, leaf sheath explants were subjected to a pretreatment under dark condition before they were transferred to the subculture medium for embryo development. Histological and scanning microscopic studies showed that the formation of translucent globular embryogenic cell suspension is an important visible stage during early somatic embryogenesis through indirect method. In the direct pathway, upon pretreatment, epidermal and subepidermal cells of the leaf sheath explants formed globular and elongated structures. The presence of clear protoderm in the globular embryos and procambial structures are crucial visible stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

NAA:

Naphthaleneacetic acid

BA:

6-Benzyladenine

GA3 :

Gibberellic Acid

Kn:

Kinetin

TDZ:

Thidiazuron

MS:

Murashige and Skoog medium

SEM:

Scanning electron microscopy

SE:

Somatic embryo

DSE:

Direct Somatic Embryogenesis

IDSE:

Indirect Somatic Embryogenesis

References

  • Balachandran SM, Bhat SR, Chandal KPS (1990) In vitro clonal multiplication of turmeric (Curcuma spp.) and ginger (Zingiber officinale Rosc). Plant Cell Rep 8:521–524. doi:10.1007/BF00820200

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Singh S, Pandey H, Pandey P, Rahman L (2012) Conservation and storage of Curcuma amada Roxb. synseeds on Luffa sponge matrix and RAPD analysis of the converted plantlets. Ind Crop Prod 36:383–388. doi:10.1016/j.indcrop.2011.10.031

    Article  CAS  Google Scholar 

  • Bao Y, Liu G, Shi X, Xing W, Ning G, Liu J, Bao M (2012) Primary and repetitive secondary somatic embryogenesis in Rosa hybrid ‘Samantha’. Plant Cell Tiss Org 109:411–418. doi:10.1007/s11240-011-0105-6

    Article  CAS  Google Scholar 

  • Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL (2000) Genetic transformation of cavendish banana (Musa spp. AAA group) cv ‘Grand Nain’ via microprojectile bombardment. Plant Cell Rep 19:229–234. doi:10.1007/s002990050004

    Article  CAS  Google Scholar 

  • Carra A, De Pasquale F, Ricci A, Carimi F (2006) Diphenylurea derivatives induce somatic embyrogenesis in Citrus. Plant Cell Tiss Org 87:41–48. doi:10.1007/s11240-006-9132-0

    Article  CAS  Google Scholar 

  • Chen AH, Yang JL, Niu YD et al (2010) High-frequency somatic embryogenesis from germinated zygotic embryos of Schisandra chinensis and evaluation of the effects of medium strength, sucrose, GA3 and BA on somatic embryo development. Plant Cell Tiss Org 102:357–364. doi:10.1007/s11240-010-9740-6

    Article  CAS  Google Scholar 

  • Choi YE, Jeong JH (2002) Dormancy induction of somatic embryos of Siberian ginseng by high sucrose concentrations enhances the conversion of hydrated artificial seeds and dehydration resistance. Plant Cell Rep 20:1112–1116. doi:10.1007/s00299-002-0455-y

    Article  CAS  Google Scholar 

  • Choudhury SN, Rabha LC, Kanjilal PB, Ghosh AC (1996) Essential oil of Curcuma amada Roxb. from Northeastern India. J Essent Oil Res 8:79–80. doi:10.1080/10412905.1996.9700560

    Article  CAS  Google Scholar 

  • Cote FX, Domergue R, Monmarson S et al (1996) Embryogenic cell suspensions from male flower of Musa AAA cv Grand nain. Physiol Plant 97:285–290. doi:10.1034/j.1399-3054.1996.970211.x

    Article  CAS  Google Scholar 

  • Dam A, Paul S, Bandyopadhyay TK (2010) Direct somatic embryogenesis and plant regeneration from leaf explants of Limonium sinensis (Girard) Kuntze. Sci Hortic 126:253–260. doi:10.1016/j.scienta.2010.06.016

    Article  CAS  Google Scholar 

  • Das A, Kesari V, Rangan L (2010) Plant regeneration in Curcuma species and assessment of genetic stability of regenerated plants. Biol Plant 54(3):423–429. doi:10.1007/s10535-010-0077-0

    Article  Google Scholar 

  • Escalant JV, Teisson C, Cote F (1994) Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa spp.). In Vitro Cell Dev Biol-Plant 30:181–186. doi:10.1007/BF02823029

    Article  Google Scholar 

  • Franklin G, Arvinth S, Sheeba CJ et al (2006) Auxin pretreatment promotes regeneration of sugarcane (Saccharum spp. hybrids) midrib segment explants. Plant Growth Regul 50:111–119. doi:10.1007/s10725-006-9108-4

    Article  CAS  Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47. doi:10.1023/B:GROW.0000038275.29262.fb

    Article  CAS  Google Scholar 

  • Ganapathi TR, Srinivas L, Suprasanna P, Bapat VA (2001) Regeneration of plants from alginate-encapsulated somatic embryos of banana cv. Rasthali (Musa SPP. AAB Group). In Vitro Cell Dev Biol-Plant 37:178–181. doi:10.1007/s11627-001-0031-0

    Article  CAS  Google Scholar 

  • Gholap AS, Bandyopadhyay C (1984) Characterization of mango-like aroma in Curcuma amada Roxb. J Agric Food Chem 32:57–59. doi:10.1021/jf00121a015

    Article  CAS  Google Scholar 

  • Grapin A, Ortiz JL, Lescot T et al (2000) Recovery and regeneration of embryogenic cultures from female flowers of False Horn Plantain. Plant Cell Tiss Org 61:237–244. doi:10.1023/A:1006423304033

    Article  CAS  Google Scholar 

  • Grapin A, Schwendiman J, Teisson C (1996) Somatic embryogenesis in plantain banana. In Vitro Cell Dev-Pl 32:66–71. doi:10.1007/BF02823133

    Article  Google Scholar 

  • Guo Y, Zhang Z (2005) Establishment and plant regeneration of somatic embryogenic cell suspension cultures of the Zingiber officinale Rosc. Sci Hortic 107:90–96. doi:10.1016/j.scienta.2005.07.003

    Article  CAS  Google Scholar 

  • Jalil M, Chee WW, Othman RY, Khalid N (2008) Morphohistological examination on somatic embryogenesis of Musa acuminata cv.Mas (AA). Sci Hortic 117:335–340. doi:10.1016/j.scienta.2008.05.018

    Article  CAS  Google Scholar 

  • Khalil SM, Cheah KT, Perez EA et al (2002) Regeneration of banana (Musa spp. AAB cv. Dwarf Brazilian) via secondary somatic embryogenesis. Plant Cell Rep 20:1128–1134. doi:10.1007/s00299-002-0461-0

    Article  CAS  Google Scholar 

  • Kirtikar KR, Basu BD (1984) Indian medicinal plants, vol 4. Bishen Singh Mahendra Pal Singh, Dehra Dun, India

    Google Scholar 

  • Komatsuda T, Lee W, Oka S (1992) Maturation and germination of somatic embryos as affected by sucrose and plant growth regulators in soybeans Glycine gracilis Skvortz and Glycine max (L.) Merr. Plant Cell Tiss Org 28:103–113. doi:10.1007/BF00039922

    Article  CAS  Google Scholar 

  • Kou Y, Ma G, Teixeira da Silva JA, Liu N (2012) Callus induction and shoot organogenesis from anther cultures of Curcuma attenuata Wall. Plant Cell Tiss Org. doi:10.1007/s11240-012-0205-y

    Google Scholar 

  • Manoharan M, Vidya CSS, Sita GL (1998) Agrobacterium-mediated genetic transformation in hot chili (Capsicum annum L. var. Pusa jwala). Plant Sci 131:77–83. doi:10.1016/S0168-9452(97)00231-8

    Article  CAS  Google Scholar 

  • Manrique-Trujillo S, Díaz D, Reaño R et al (2013) Sweetpotato plant regeneration via an improved somatic embryogenesis protocol. Sci Hortic 161:95–100. doi:10.1016/j.scienta.2013.06.038

    Article  CAS  Google Scholar 

  • Mizukami M, Takeda T, Satonaka H, Matsuota H (2008) Improvement of propagation frequency with two-step direct somatic embryogenesis from carrot hypocotyls. Biochem Eng J 38:55–60. doi:10.1016/j.bej.2007.06.004

    Article  CAS  Google Scholar 

  • Mohanty S, Panda MK, Subudhi E, Nayak S (2008) Plant regeneration from callus culture of Curcuma aromatica and in vitro detection of somoclonal variation through cytophotometric analysis. Biol Plant 52:783–786. doi:10.1007/s10535-008-0153-x

    Article  Google Scholar 

  • Mustafa A, Ali M, Khan NZ (2005) Volatile oil constituents of the fresh rhizome of Curcuma amada Roxb. J Essent Oil Res 17:490–491. doi:10.1080/10412905.2005.9698974

    Article  CAS  Google Scholar 

  • Nanda RM, Rout GR (2003) In vitro somatic embryogenesis and plant regeneration in Acacia arabica. Plant Cell Tiss Org 73:131–135. doi:10.1023/A:1022858118392

    Article  CAS  Google Scholar 

  • Navarro C, Escobedo RM, Mayo A (1997) In vitro plant regeneration from embryogenic cultures of a diploid and a tetraploid, Cavendish banana. Plant Cell Tiss Org 51:17–25. doi:10.1023/A:1005965030075

    Article  Google Scholar 

  • Nhut DT, Le BV, Van KTT (2000) Somatic embryogenesis and direct shoot regeneration of rice (Oryza sativa L.) using thin cell layer culture of apical meristematic tissue. J Plant Physiol 157:559–565. doi:10.1016/S0176-1617(00)80112-1

    Article  CAS  Google Scholar 

  • Okamura M, Taniguchi T, Kondo T (2001) Efficient embryogenic callus induction and plant regeneration from embryogenic axis explants in Quercus acutissima. J For Res 6:63–66. doi:10.1007/BF02762489

    Article  Google Scholar 

  • Panaia M, Bunn E, McComb J (2011) Primary and repetitive secondary somatic embryogenesis of Lepidosperma drummondii (Cyperaceae) and Baloskion tetraphyllum (Restionaceae) for land restoration and horticulture. In Vitro Cell Dev Biol-Plant 47:379–386. doi:10.1007/s11627-010-9335-2

    Article  Google Scholar 

  • Paul S, Dam A, Bhattacharyyarya A, Bandyopadhyay TK (2011) An efficient regeneration system via direct and indirect somatic embryogenesis for the medicinal tree Murraya koenigii. Plant Cell Tissue Org 105:271–283. doi:10.1007/s11240-010-9864-8

    Article  Google Scholar 

  • Pinto DLP, de Almeida AMR, Rêgo MM et al (2011) Somatic embryogenesis from mature zygotic embryos of commercial passion fruit (Passiflora edulis Sims) genotypes. Plant Cell Tiss Org 107:521–530. doi:10.1007/s11240-011-0003-y

    Article  Google Scholar 

  • Policegoudra RS, Aradhya SM (2008) Structure and biochemical properties of starch from an unconventional source-mango ginger (Curcuma amada Roxb.) rhizome. Food Hydrocoll 22:513–519. doi:10.1016/j.foodhyd.2007.01.008

    Article  CAS  Google Scholar 

  • Policegoudra RS, Aradhya SM, Singh L (2011) Mango ginger (Curcuma amada Roxb.)-a promising spice for phytochemicals and biological activities. J Biosci 36(4):739–748. doi:10.1007/s12038-011-9106-1

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Elangomathavan R, Seshadri S et al (2004) Efficient regeneration of Curcuma amada Roxb. Plantlets from rhizome and leaf sheath explants. Plant Cell Tissue Org 78:159–165. doi:10.1023/B:TICU.0000022553.83259.29

    Article  CAS  Google Scholar 

  • Prasath D, El-Sharkawy I, Sherif S et al (2011) Cloning and characterization of PR5 gene from Curcuma amada and Zingiber officinale in response to Ralstonia solanacearum infection. Plant Cell Rep 30:1799–1809. doi:10.1007/s00299-011-1087-x

    Article  CAS  PubMed  Google Scholar 

  • Rao AS, Rajanikanth B, Seshadri R (1989) Volatile aroma components of Curcuma amada Roxb. J Agric Food Chem 37:740–743. doi:10.1021/jf00087a036

    Article  CAS  Google Scholar 

  • Remakanthan A, Menon TG, Soniya EV (2013) Somatic embryogenesis in banana (Musa acuminata AAA cv. Grand Naine): effect of explant and culture conditions. In Vitro Cell Dev Biol-Plant 50:127–136. doi:10.1007/s11627-013-9546-4

    Article  CAS  Google Scholar 

  • Salvi ND, George L, Eapen S (2001) Plant regeneration from leaf base callus of turmeric and random amplified polymorphic DNA analysis of regenerated plants. Plant Cell Tiss Org 66:113–119. doi:10.1023/A:1010638209377

    Article  CAS  Google Scholar 

  • Scherwinski-Pereira SJE, da Silva GS, da Silva RA et al (2012) Somatic embryogenesis and plant regeneration in açaí palm (Euterpe oleracea). Plant Cell Tissue Org 109:501–508. doi:10.1007/s11240-012-0115-z

    Article  CAS  Google Scholar 

  • Singh S, Kumar JK, Saikia D et al (2010) A bioactive labdane diterpenoid from Curcuma amada and its semisynthetic analogues as antitubercular agents. Eur J Med Chem 45:4379–4382. doi:10.1016/j.ejmech.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  • Slabbert MM, Bruyn MN, Ferreira DI, Pretorius J (1995) Adventitious in vitro plantlet formation from immature floral stems of Crinum macowanii. Plant Cell Tissue Org 43:51–57. doi:10.1007/BF00042671

    Article  Google Scholar 

  • Soundar Raju C, Kathiravan K, Aslam A, Shajahan A (2013) An efficient regeneration system via somatic embryogenesis in mango ginger (Curcuma amada Roxb.). Plant Cell Tissue Org 112:387–393. doi:10.1007/s11240-012-0244-4

    Article  CAS  Google Scholar 

  • Soundar Raju C, Aslam A, Kathiravan K et al (2014) Direct somatic embryogenesis and plant regeneration from leaf sheath explants of mango ginger (Curcuma amada Roxb.). In Vitro Cell Dev Biol-Plant 50:752–759. doi:10.1007/s11627-014-9653-x

    Article  CAS  Google Scholar 

  • Srinivasan MR, Chandrasekhara N, Srinivasan K (2008) Cholesterol lowering activity of mango ginger (Curcuma amada Roxb.) in induced hypercholesterolemic rats. Eur Food Res Technol 227:1159–1163. doi:10.1007/s00217-008-0831-0

    Article  CAS  Google Scholar 

  • Srivastava AK, Srivastava SK, Shah NC (2001) Constituents of rhizome essential oil of Curcuma amada Roxb. Indian J Essent Oil Res 13:63–64. doi:10.1080/10412905.2001.9699608

    Article  CAS  Google Scholar 

  • Tokuji Y, Fukuda H (1999) A rapid method for transformation of carrot (Daucus carota L.) by using direct somatic embryogenesis. Biosci Biotechnol Biochem 63:519–523. doi:10.1271/bbb.63.519

    Article  CAS  PubMed  Google Scholar 

  • Warrier PK, Nambiar VPK, Ramankutty C (1994) Indian medicinal plants-a compendium of 500 species, vol 1. Ltd., Chennai, Orient Longman Pvt, p 106

    Google Scholar 

  • Woo SH, Nair A, Adachi T, Campbell CG (2000) Plant regeneration from cotyledon tissue of common buckwheat (Fagopyrum esculentum Moench). In Vitro Cell Dev-Pl 36:358–361. doi:10.1007/s11627-000-0063-x

    Article  CAS  Google Scholar 

  • You CR, Fan TJ, Gong XQ et al (2011) A high-frequency cyclic secondary somatic embryogenesis system for Cyclamen persicum Mill. Plant Cell Tiss Org 107:233–242. doi:10.1007/s11240-011-9974-y

    Article  Google Scholar 

  • Zhang S, Liu N, Sheng A et al (2011) In vitro plant regeneration from organogenic callus of Curcuma kwangsiensis Lindl. (Zingiberaceae). Plant Growth Regul 64:141–145. doi: 10.1007/s10725-010-9548-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Appakan Shajahan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shajahan, A. et al. (2016). Direct and Indirect Somatic Embryogenesis in Mango Ginger (Curcuma amada Roxb.). In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Somatic Embryogenesis: Fundamental Aspects and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33705-0_20

Download citation

Publish with us

Policies and ethics