Skip to main content

Nonlinear Structure Formation in Nonlocal Gravity

  • Chapter
  • First Online:
  • 389 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

We now turn our attention to large scale structure formation in nonlocal gravity models. In these models, the modifications to gravity arise via the addition of nonlocal terms (i.e. which depend on more than one point in spacetime) to the Einstein field equations. These terms typically involve the inverse of the d’Alembertian operator, \(\Box ^{-1}\), acting on curvature tensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The content in this chapter is based on the article Barreira et al. “Nonlinear structure formation in nonlocal gravity”, Journal of Cosmology and Astroparticle Physics, Volume 2014, Published 17 September 2014, ©IOP Publishing Ltd. Reproduced with permission. All rights reserved, http://dx.doi.org/10.1088/1475-7516/2014/09/031 (Ref. [1]).

  2. 2.

    For instance, in flat four-dimensional Minkowski space we have \(\Box = +\frac{\partial ^2}{\partial t^2} - \frac{\partial ^2}{\partial x^2} - \frac{\partial ^2}{\partial y^2} - \frac{\partial ^2}{\partial z^2}\).

  3. 3.

    In Eq. (6.24), \(\Delta G_{\mu \nu }\) also vanishes if \(\chi = 0\).

  4. 4.

    Here, \(\theta \) is the Fourier mode of the divergence of the peculiar physical velocity field v, defined as \(\theta (\mathbf {x}) = \nabla v(\mathbf {x})/H_0\).

References

  1. Alexandre B, Li Baojiu, Hellwing Wojciech A, Baugh Carlton M, Silvia P (2014d) Nonlinear structure formation in Nonlocal Gravity. JCAP 1409(09):031. arXiv:1408.1084

  2. Woodard RP (2014) Nonlocal models of cosmic acceleration. Found Phys 44: 213–233. arXiv:1401.0254

    Google Scholar 

  3. Deser S, Woodard RP (2007) Nonlocal cosmology. Phys Rev Lett 99: 111301. arXiv:0904.0961

  4. Deffayet C, Woodard RP (2009) Reconstructing the distortion function for nonlocal cosmology. JCAP 0908: 023 arXiv:0904.0961

    Google Scholar 

  5. Deser S, Woodard RP (2013) Observational viability and stability of nonlocal cosmology. JCAP 1311: 036, arXiv:1307.6639

    Google Scholar 

  6. Nojiri S, Odintsov SD (2008) Modified non-local-F(R) gravity as the key for the inflation and dark energy. Phys Lett B659: 821–826, arXiv:0708.0924

  7. Jhingan S et al (2008) Phantom and non-phantom dark energy: the cosmological relevance of non-locally corrected gravity. Phys Lett B663: 424–428. arXiv:0803.2613

    Google Scholar 

  8. Koivisto T (2008a) Dynamics of nonlocal cosmology. Phys Rev D77: 123513. arXiv:803.3399

  9. Koivisto TS (2008b) Newtonian limit of nonlocal cosmology. Phys Rev D78: 123505. arXiv:0807.3778

  10. Elizalde E, Pozdeeva EO, Vernov SY (2012) De Sitter universe in nonlocal gravity. Phys Rev D 85(4):044002. arXiv:1110.5806

  11. Elizalde E, Pozdeeva EO, Vernov SY (2013) Reconstruction procedure in nonlocal cosmological models. Class. Quantum Gravity 30(3):035002. arXiv:1209.5957

    Google Scholar 

  12. Park S, Dodelson S (2013) Structure formation in a nonlocally modified gravity model. Phys Rev D 87(2): 024003. arXiv:1209.0836

  13. Scott D, Sohyun P (2013) Nonlocal gravity and structure in the universe. Phys Rev D. arXiv:1310:4329

  14. Maggiore M (2014) Phantom dark energy from non-local infrared modifications of General Relativity. Phys Rev D89: 043008. arXiv:1307.3898

  15. Foffa S, Maggiore M, Mitsou E (2014a) Cosmological dynamics and dark energy from non-local infrared modifications of gravity. Int J Mod Phys A29. arXiv:1311.4245

  16. Kehagias A, Maggiore M (2014) Spherically symmetric static solutions in a non-local infrared modification of general relativity. JHEP. arXiv:1401.8289

  17. Savvas N, Shinji T (2014) Cosmological perturbations and observational constraints on non-local massive gravity. Phys Rev D. arXiv:1402:4613

  18. Maud J, Michele M, Ermis M (2013) Nonlocal theory of massive gravity. Phys Rev D. 88(4):044033. arXiv:1305.3034

  19. Foffa S, Maggiore M, Mitsou E (2014b) Apparent ghosts and spurious degrees of freedom in non-local theories. Phys Lett B733: 76–83. arXiv:1311.3421

    Google Scholar 

  20. Modesto L, Tsujikawa S (2013) Non-local massive gravity. Phys Lett B727: 48–56. arXiv:1307.6968

    Google Scholar 

  21. Ferreira Pedro G, Maroto Antonio L (2013) A few cosmological implications of tensor nonlocalities. Phys Rev D 88(12):123502. arXiv:1310.1238

  22. Maggiore M, Mancarella M (2014) Non-local gravity and dark energy. Phys Rev D 90: 023005. arXiv:1402.0448

  23. Dirian Y, Foffa S, Khosravi N, Kunz M, Maggiore M (2014a) Cosmological perturbations and structure formation in nonlocal infrared modifications of general relativity. JCAP 1406: 033. arXiv:1403.6068

    Google Scholar 

  24. Capozziello S, Elizalde E, Nojiri S, Odintsov SD (2009) Accelerating cosmologies from non-local higher-derivative gravity. Phys Lett B671: 193–198. arXiv:0809.1535

    Google Scholar 

  25. Koshelev NA (2009) Comments on scalar-tensor representation of nonlocally corrected gravity. Grav Cosmol 15: 220–223. arXiv:0809.4927

  26. Koivisto TS (2010) Cosmology of modified (but second order) gravity. AIP Conf Proc 1206: 79–96. arXiv:0910.4097

  27. Barvinsky AO (2012) Serendipitous discoveries in nonlocal gravity theory. Phys Rev D85: 104018. arXiv:1112.4340

  28. Will Clifford M (2014) The confrontation between general relativity and experiment. Living Rev. arXiv:1403:7377

  29. Babichev E, Deffayet C, Esposito-Farese G (2011) Constraints on shift-symmetric scalar-tensor theories with a vainshtein mechanism from bounds on the time variation of G. Phys Rev Lett 107: 251102. arXiv:1107.1569

  30. Kimura R, Kobayashi T, Yamamoto K (2012) Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory. Phys Rev D 85(2):024023. arXiv:1111.6749

  31. Ade PAR et al (2013) Planck 2013 results. XV, CMB power spectra and likelihood. arXiv:1303.5075

  32. Ade PAR et al (2013) Planck 2013 results. XVI, Cosmological parameters. arXiv:1303.5076

  33. Antony L. http://camb.info/

  34. Yves D, Stefano F, Martin K, Michele M, Valeria P (2014b) Non-local gravity and comparison with observational datasets. arXiv:1411:7692

  35. Romain T (2002) Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution code called ramses. Astron. Astrophys. 385:337–364. arXiv:astro-ph/0111367

  36. Williams JG, Turyshev SG, Boggs DH (2004) Progress in lunar laser ranging tests of relativistic gravity. Phys Rev Lett 93: 261101. arXiv:gr-qc/0411113

  37. Behroozi PS, Wechsler RH, Wu H-Yi (2013) The rockstar phase-space temporal halo finder and the velocity offsets of cluster cores. Astrophys J 762: 109. arXiv:1110.4372

    Google Scholar 

  38. Hellwing WA, Juszkiewicz R (2009) Dark matter gravitational clustering with a long-range scalar interaction. Phys Rev D 80(8): 083522. arXiv:0809.1976

  39. Hellwing WA, Knollmann SR, Knebe A (2010) Boosting hierarchical structure formation with scalar-interacting dark matter. MNRAS 408:L104–L108. arXiv:1004.2929

    Google Scholar 

  40. Hellwing WA (2010) Galactic halos in cosmology with long-range scalar DM interaction. Annalen der Physik 522: 351–354. arXiv:0911.0573

    Google Scholar 

  41. Hellwing WA, Cautun M, Knebe A, Juszkiewicz R, Knollmann S (2013b) DM haloes in the fifth-force cosmology. J Cosmol Astropart Phys 10: 12. arXiv:1111.7257

  42. Stephane C, Jaffe Andrew H, Dmitri N, Christophe P (2008) Accurate estimators of power spectra in N-body simulations. arXiv:0811:0313

  43. Philippe B, Patrick V (2014b) K-mouflage cosmology: formation of large-scale structures. arXiv:1403:5424

  44. Cautun MC, Weygaert van de R (2011) The dtfe public software - the delaunay tessellation field estimator code. arXiv:1105.0370

  45. Schaap WE, van de Weygaert R (2000) Continuous fields and discrete samples: reconstruction through Delaunay tessellations. A & A 363:L29–L32. arXiv:astro-ph/0011007

  46. Cautun M, van de Weygaert R, Jones BJT, Frenk CS (2014) Evolution of the cosmic web. Mon Not Roy Astron Soc 441: 2923–2973. arXiv:1401.7866

    Google Scholar 

  47. Cautun M, van de Weygaert R, Jones BJT (2013) NEXUS: tracing the cosmic web connection. Mon Not Roy Astron Soc 429: 1286–1308. arXiv:1209.2043

    Google Scholar 

  48. Libeskind NI, Hoffman Y, Gottlöber S (2014) The velocity shear and vorticity across redshifts and non-linear scales. Mon Not Roy Astron Soc 441: 1974–1983. arXiv:1310.5706

    Google Scholar 

  49. Li B, Hellwing WA, Koyama K, Zhao GB, Jennings E, Baugh CM (2013) The non-linear matter and velocity power spectra in f(R) gravity. Mon Not Roy Astron Soc 428: 743–755. arXiv:1206.4317

    Google Scholar 

  50. Marco B et al (2013) Cosmic degeneracies i: joint n-body simulations of modified gravity and massive neutrinos. arXiv:1311:2588

  51. Junsup S, Jounghun L, Marco B (2014) Breaking the cosmic degeneracy between modified gravity and massive neutrinos with the cosmic web. arXiv:1404:3639

  52. Barreira A, Li B, Baugh C, Pascoli S (2014b) \(\nu \)Galileon: modified gravity with massive neutrinos as a testable alternative to \(\Lambda \)CDM. arXiv:1404.1365

  53. Alexandre B, Li B, Carlton B, Silvia P (2014a) The observational status of Galileon gravity after Planck. arXiv:1406:0485

  54. Laureijs R et al (2011) Euclid definition study. Report. arXiv:1110:3193

  55. Luca A et al (2012) Cosmology and fundamental physics with the euclid satellite. arXiv:1206:1225

  56. Levi M et al (2013) The desi experiment, a whitepaper for snowmass 2013. arXiv:1308.0847

  57. LSST Dark Energy Science Collaboration (2012) Large synoptic survey telescope: dark energy science collaboration. arXiv:1211.0310

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Barreira .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barreira, A. (2016). Nonlinear Structure Formation in Nonlocal Gravity. In: Structure Formation in Modified Gravity Cosmologies. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-33696-1_6

Download citation

Publish with us

Policies and ethics