SmartCity 360 2016, SmartCity 360 2015: Smart City 360° pp 227-238 | Cite as

Applications and Challenges of Life Cycle Assessment in the Context of a Green Sustainable Telco Cloud

  • Thomas DandresEmail author
  • Reza Farrahi Moghaddam
  • Kim Nguyen
  • Yves Lemieux
  • Mohamed Cheriet
  • Réjean Samson
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 166)


An LCA was conducted on a novel Telco-grade cloud technology. Server cloudification has been found to significantly reduce the environmental life cycle impacts as compared to a non-cloud situation. Improving service quality is possible without drastically increasing the life cycle impacts as compared to the non-cloud situation. In this LCA, a novel methodology was used to model electricity flows during ICT use to better reflect the temporal variation in electricity generation by utilities and electricity consumption by ICT. Nevertheless, numerous methodological challenges remain unresolved and more research is required to improve the LCA methodological framework for ICT.


Information and communication technologies ICT Cloud computing Life cycle assessment LCA 



The authors would like to thank NSERC for its financial support under grant CRDPJ 424371-11.


  1. 1.
    Bertolini, M., et al.: Lead time reduction through ICT application in the footwear industry: A case study. Int. J. Prod. Econ. 110(1–2), 198–212 (2007)CrossRefGoogle Scholar
  2. 2.
    Gabberty, J.: Management of the productivity of information and communications technology (ICT) in the financial services industry. In: Computational Finance computational Finance and its Applications I and its Applications II: p. 13 (2006)Google Scholar
  3. 3.
    Guerrisi, A., Martino, M., Tartaglia, M.: Energy saving in social housing: an innovative ICT service to improve the occupant behaviour. In: 2012 International Conference on Renewable Energy Research and Applications (ICRERA) (2012)Google Scholar
  4. 4.
    Van Heddeghem, W., et al.: Trends in worldwide ICT electricity consumption from 2007 to 2012. Comput. Commun. 50, 64–76 (2014)CrossRefGoogle Scholar
  5. 5.
    Collard, F., Fève, P., Portier, F.: Electricity consumption and ICT in the French service sector. Energy Econ. 27(3), 541–550 (2005)CrossRefGoogle Scholar
  6. 6.
    Malmodin, J., et al.: Greenhouse gas emissions and operational electricity use in the ICT and entertainment & media sectors. J. Industr. Ecol. 14(5), 770–790 (2010)CrossRefGoogle Scholar
  7. 7.
    Koomey, J.G.: Growth in data centre electricity use 2005 to 2010, pp. 1–24 (2011)Google Scholar
  8. 8.
    Ryen, E.G., Babbitt, C.W., Williams, E.: Consumption-weighted life cycle assessment of a consumer electronic product community. Environ. Sci. Technol. 49(4), 2549–2559 (2015)CrossRefGoogle Scholar
  9. 9.
    Lannoo, B., et al.: Overview of ICT energy consumption. In: Network of Excellence in Internet Science, pp. 1–59 (2013)Google Scholar
  10. 10.
    United States Environmental Protection Agency: Report to Congress on Server and Data Center Energy Efficiency, pp. 1–133 (2007)Google Scholar
  11. 11.
    Thomond, P.: The enabling technologies of a low-carbon economy: a focus on cloud computing. In: GeSI, Microsoft, Johns Hopkins University, think play do, pp. 1–112 (2013)Google Scholar
  12. 12.
    Global e-Sustainability Initiative and The Boston Consuting Group, GeSI SMARTer 2020, Global eSustainability Initiative, pp. 1–87 (2012)Google Scholar
  13. 13.
    Guinée, J.B., et al.: Life cycle assessment: past, present, and future. Environ. Sci. Technol. 45(1), 90–96 (2011)CrossRefGoogle Scholar
  14. 14.
    Hischier, R., Achachlouei, M.A., Hilty, L.M.: Evaluating the sustainability of electronic media: strategies for life cycle inventory data collection and their implications for LCA results. Environ. Model. Softw. 56, 27–36 (2014)CrossRefGoogle Scholar
  15. 15.
    Moberg, Å., et al.: Simplifying a life cycle assessment of a mobile phone. Int. J. Life Cycle Assess. 19(5), 979–993 (2014)CrossRefGoogle Scholar
  16. 16.
    Meza, J., et al.: Lifecycle-based data center design. In: ASME 2010 International Mechanical Engineering Congress & Exposition. Vancouver, British Columbia, Canada (2010)Google Scholar
  17. 17.
    Honee, C., et al.: Environmental performance of data centres - a case study of the Swedish National Insurance Administration. In: Electronics Goes Green 2012 + (EGG), 2012 (2012)Google Scholar
  18. 18.
    Borggren, C., et al.: Business meetings at a distance – decreasing greenhouse gas emissions and cumulative energy demand? J. Cleaner Prod. 41, 126–139 (2013)CrossRefGoogle Scholar
  19. 19.
    Borggren, C., Moberg, Å., Finnveden, G.: Books from an environmental perspective—Part 1: environmental impacts of paper books sold in traditional and internet bookshops. Int. J. Life Cycle Assess. 16(2), 138–147 (2011)CrossRefGoogle Scholar
  20. 20.
    Moberg, Å., Borggren, C., Finnveden, G.: Books from an environmental perspective—Part 2: e-books as an alternative to paper books. Int. J. Life Cycle Assess. 16(3), 238–246 (2011)CrossRefGoogle Scholar
  21. 21.
    Moberg, Å., et al., Effects of a total change from paper invoicing to electronic invoicing in Sweden (2008)Google Scholar
  22. 22.
    Bull, J.G., Kozak, R.A.: Comparative life cycle assessments: the case of paper and digital media. Environ. Impact Assess. Rev. 45, 10–18 (2014)CrossRefGoogle Scholar
  23. 23.
    Statistics Canada: Provincial gross domestic product (GDP) at basic prices, by sector and industry. In: CANSIM (ed.) (2011)Google Scholar
  24. 24.
    Chitika: 24-Hour Examination: Average Mobile and Desktop Usage Rates (2013)Google Scholar
  25. 25.
    Guldbrandsson, F., Bergmark, P.: Opportunities and limitations of using life cycle assessment methodology in the ICT sector. In: Electronics Goes Green 2012 + (EGG), (2012)Google Scholar
  26. 26.
    Arushanyan, Y., Ekener-Petersen, E., Finnveden, G.: Lessons learned – Review of LCAs for ICT products and services. Comput. Ind. 65(2), 211–234 (2014)CrossRefGoogle Scholar
  27. 27.
    ecoinvent Center: Ecoinvent Data - the Life Cycle Inventory Data. Swiss Centre for Life Cycle Inventories, Dübendorf (2007)Google Scholar
  28. 28.
    Farrahi Moghaddam, F.: Carbon metering and effective tax cost modeling for virtual machines (2012)Google Scholar
  29. 29.
    Maurice, E., et al.: Modelling of electricity mix in temporal differentiated life-cycle-assessment to minimize carbon footprint of a cloud computing service. In: ICT4S, Stockholm, Sweden (2014)Google Scholar
  30. 30.
    AESO: Market participant information - Data Requests (2012).
  31. 31.
    IESO: Generator Output and Capability (2012) cited 2012.
  32. 32.
    Government of Canada: Energy Information - Statistics and Analysis (2012). [cited 2013].
  33. 33.
    Maurice, E.: Modélisation temporelle de la consommation électrique en analyse du cycle de vie, appliquée au contexte des TIC. In: Département de Génie Chimique, Université de Montréal: Montreal, pp. 1–268 (2015)Google Scholar
  34. 34.
    Van Heddeghem, W., et al.: Distributed computing for carbon footprint reduction by exploiting low-footprint energy availability. Future Gener. Comput. Syst. 28(2), 405–414 (2012)CrossRefGoogle Scholar
  35. 35.
    Hischier, R.: Composition-Tool-electronics. In: Dandres, T. (ed.) (2014)Google Scholar
  36. 36.
    Vandromme, N., et al.: Life cycle assessment of videoconferencing with call management servers relying on virtualization. In: ICT4S. Stockholm, Sweden (2014)Google Scholar
  37. 37.
    Pre Consultants: SimaPro. Pre Consultants, Amersfoort (2007)Google Scholar
  38. 38.
    European Telecommunications Standards Institute: ETSI TS 103 199 V1.1.1. In: Technical Specification, pp. 1–155 (2011)Google Scholar
  39. 39.
    International Telecommunication Union: Recommendation ITU-T L.1400. In: Telecommunication Standardization Sector for ITU, pp. 1–30 (2011)Google Scholar
  40. 40.
    Vandromme, N.: Modélisation conséquentielle de la consommation d’énergie d’un groupe de servers générant un nuage informatique et attributionnelle des bénéfices de la virtualisation. In: Département de génie chimique, Université de Montréal: Montréal, pp. 1–210 (2014)Google Scholar
  41. 41.
    Dandres, T., et al.: Minimization of Telco cloud emissions based on marginal electricity management. In: ICT4S: Stockholm, Sweden (2014)Google Scholar
  42. 42.
    Dandres, T., et al.: Consideration of marginal electricity in real-time minimization of telco cloud emissions. J. Ind. Ecol. (2015, in preparation) Google Scholar
  43. 43.
    Dandres, T., et al.: Consequences of future data centre deployment on North American electricity generation and environmental impacts: a 2015–2030 prospective study. J. Cleaner Prod. (2015, in preparation)Google Scholar
  44. 44.
    Okrasinski, T., Malian, J., Arnold, J.: Data assessment and collection for a simplified LCA tool. In: Carbon Management Technology Conference (2012)Google Scholar
  45. 45.
    Yao, M.A., et al.: Comparative assessment of life cycle assessment methods used for personal computers. Environ. Sci. Technol. 44(19), 7335–7346 (2010)CrossRefGoogle Scholar
  46. 46.
    Higgs, T., et al.: Review of LCA methods for ICT products and the impact of high purity and high cost materials. In: 2010 IEEE International Symposium on Sustainable Systems and Technology (ISSST) (2010)Google Scholar
  47. 47.
    Farrant, L., Le Guern, Y.: Which environmental impacts for ICT? - LCA case study on electronic mail. In: Electronics Goes Green 2012 + (EGG), 2012 (2012)Google Scholar
  48. 48.
    Blazek, M., et al.: Tale of two cities: environmental life cycle assessment for telecommunications systems: Stockholm, Sweden and Sacramento, CA. In: Proceedings of the 1999 IEEE International Symposium on Electronics and the Environment, 1999. ISEE -1999 (1999)Google Scholar
  49. 49.
    Guldbrandsson, F., Malmodin, J.: Life cycle assessment of virtual meeting solutions. In: EcoBalance 2010, Tokyo, Japan (2010)Google Scholar
  50. 50.
    Malmodin, J., et al.: Methodology for life cycle based assessments of the CO < inf > 2</inf > reduction potential of ICT services. In: 2010 IEEE International Symposium on Sustainable Systems and Technology (ISSST) (2010)Google Scholar
  51. 51.
    Ichino Takahashi, K., et al.: Estimation of videoconference performance: approach for fairer comparative environmental evaluation of ICT services. In: Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment (2006)Google Scholar
  52. 52.
    Takahashi, K.I., et al.: Environmental impact of information and communication technologies including rebound effects. In: 2004 IEEE International Symposium on Electronics and the Environment, 2004. Conference Record (2004)Google Scholar
  53. 53.
    Takahashi, K.I., et al.: Environmental assessment of e-Learning based on a customer survey. In: Fourth International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 2005. Eco Design 2005 (2005)Google Scholar
  54. 54.
    Lee, K.-M., Park, P.-J.: Estimation of the environmental credit for the recycling of granulated blast furnace slag based on LCA. Res. Conserv. Recycl. 44(2), 139–151 (2005)CrossRefGoogle Scholar
  55. 55.
    Frees, N.: Crediting aluminium recycling in LCA by demand or by disposal. Int. J. Life Cycle Assess. 13(3), 212–218 (2008)CrossRefGoogle Scholar
  56. 56.
    Wolf, M.-A., et al.: The International Reference Life Cycle Data System (ILCD) Handbook - Towards More Sustainable Production and Consumption for a Resource-Efficient Europe, pp. 1–72. 2012Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

Authors and Affiliations

  • Thomas Dandres
    • 1
    Email author
  • Reza Farrahi Moghaddam
    • 2
  • Kim Nguyen
    • 3
  • Yves Lemieux
    • 2
  • Mohamed Cheriet
    • 3
  • Réjean Samson
    • 1
  1. 1.CIRAIG - Polytechnique MontréalUniversité de MontréalMontrealCanada
  2. 2.Ericsson Canada Inc.MontrealCanada
  3. 3.Synchromedia - École de Technologie SupérieureUniversité du QuébecMontrealCanada

Personalised recommendations