Advertisement

SmartCity 360 2016, SmartCity 360 2015: Smart City 360° pp 166-178 | Cite as

On the Use of Consumer-Grade Activity Monitoring Devices to Improve Predictions of Glycemic Variability

  • Chandra Krintz
  • Rich Wolski
  • Jordan E. Pinsker
  • Stratos Dimopoulos
  • John Brevik
  • Eyal Dassau
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 166)

Abstract

This paper examines the use of partial least squares regression to predict glycemic variability in subjects with Type I Diabetes Mellitus using measurements from continuous glucose monitoring devices and consumer-grade activity monitoring devices. It illustrates a methodology for generating automated predictions from current and historical data and shows that activity monitoring can improve prediction accuracy substantially.

Keywords

Activity monitoring Diabetes Prediction Decision support 

References

  1. 1.
    Cameron, F., Baghurst, P., Rodbard, D.: Assessing glycemic variation: why, when, and how? J. Pediatr. Endocr. Rev. 7(3), 432–444 (2010)Google Scholar
  2. 2.
    Czerwoniuk, D., Fendler, W., Walenciak, L., Mylnarski, W.: GlyCulator: a Glycemic variability calculation tool for continuous glucose monitoring data. J. Diab. Sci. Technol. 5(2), 447–451 (2011)CrossRefGoogle Scholar
  3. 3.
    Dexcom. https://www.dexcom.com/. Accessed 25 Mar 2015
  4. 4.
    Ellingsen, C., Dassau, E., Zisser, H.C., Grosman, B., Percival, M.W., Janovic, L., Doyle III, F.J.: Safety constraints in an artificial pancreatic-cell: an implementation of model predictive control with insulin-on-board. J. Diab. Sci. Technol. 3(3), 536–544 (2009)CrossRefGoogle Scholar
  5. 5.
    Farhy, L.S., Ortiz, E.A., Kovatchev, B.P., Mora, A.G., Wolf, S.E., Wade, C.E.: Range, average daily risk range as a measure of Glycemic risk is associated with mortality in the intensive care unit: a Retrospective study in a burn intensive care unit. J. Diab. Sci. Technol. 5(5), 1087–1098 (2011)CrossRefGoogle Scholar
  6. 6.
    Garmin. https://www.garmin.com/. Accessed 25 Mar 2015
  7. 7.
    Gondhalekar, R., Dassau, E., Zisser, H.C., Doyle III, F.J.: Periodic-zone model predictive control for diurnal closed-loop operation of an artificial pancreas. J. Diab. Sci. Technol. 7(3), 1446–1460 (2013)CrossRefGoogle Scholar
  8. 8.
    Jawbone. https://www.jawbone.com/. Accessed 25 Mar 2015
  9. 9.
    Kovatchev, B., Otto, E., Cox, D., Gonder-Frederic, L., Clarke, W.: Evaluation of new measures of glucose variability in diabetes. J. Diab. Care 29(11), 2433–2438 (2006)CrossRefGoogle Scholar
  10. 10.
    Ordinary Least Squares. https://en.wikipedia.org/wiki/Ordinary_least_squares. Accessed 25 Mar 2015
  11. 11.
  12. 12.
    Rawlings, R.A., Shi, H., Yuan, L.H., Brehm, W., Pop-Busui, R., Nelson, P.W.: Translating glucose variability metrics into the clinic via continuous glucose monitoring: a graphical user interface for diabetes evaluation. J. Diab. Technol. Ther. 13(12), 1241–1248 (2011)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Rodbard, D.: Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control. J. Diab. Technol. Ther. 11(1), S55–S67 (2009)Google Scholar
  15. 15.
    Service, F.J.: Glucose variability. J. Diab. 62(5), 1398–1404 (2013)CrossRefGoogle Scholar
  16. 16.
    Tobias, R.D., et al.: An introduction to partial least squares regression. In: 20th Proceedings of Annual SAS Users Group International Conference, Orlando, FL, pp. 2–5. Citeseer (1995)Google Scholar
  17. 17.
    van Heusden, K., Dassau, E., Zisser, H.C., Seborg, D.E., Doyle III, F.J.: Control-relevant models for glucose control using a priori patient characteristics. IEEE Trans. Biomed. Eng. 59(7), 1839–1849 (2012)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

Authors and Affiliations

  • Chandra Krintz
    • 1
  • Rich Wolski
    • 1
  • Jordan E. Pinsker
    • 3
  • Stratos Dimopoulos
    • 1
  • John Brevik
    • 4
  • Eyal Dassau
    • 2
  1. 1.Computer Science DepartmentUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Chemical Engineering DepartmentUniversity of CaliforniaSanta BarbaraUSA
  3. 3.William Sansum Diabetes CenterSanta BarbaraUSA
  4. 4.Mathematics DepartmentCalifornia State UniversityLong BeachUSA

Personalised recommendations