Skip to main content

On the Use of Consumer-Grade Activity Monitoring Devices to Improve Predictions of Glycemic Variability

  • Conference paper
  • First Online:
Smart City 360° (SmartCity 360 2016, SmartCity 360 2015)

Abstract

This paper examines the use of partial least squares regression to predict glycemic variability in subjects with Type I Diabetes Mellitus using measurements from continuous glucose monitoring devices and consumer-grade activity monitoring devices. It illustrates a methodology for generating automated predictions from current and historical data and shows that activity monitoring can improve prediction accuracy substantially.

This work has been supported, in part, JDRF grant number 17-2013-473, NSF grants CCF-1539586, CNS-0905237, CNS-1218808, and ACI-0751315, and NIH grant 1R01EB014877-01. We also acknowledge Wendy C. Bevier and Paige K. Bradley for the William Sansum Diabetes Center for their indispensable contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cameron, F., Baghurst, P., Rodbard, D.: Assessing glycemic variation: why, when, and how? J. Pediatr. Endocr. Rev. 7(3), 432–444 (2010)

    Google Scholar 

  2. Czerwoniuk, D., Fendler, W., Walenciak, L., Mylnarski, W.: GlyCulator: a Glycemic variability calculation tool for continuous glucose monitoring data. J. Diab. Sci. Technol. 5(2), 447–451 (2011)

    Article  Google Scholar 

  3. Dexcom. https://www.dexcom.com/. Accessed 25 Mar 2015

  4. Ellingsen, C., Dassau, E., Zisser, H.C., Grosman, B., Percival, M.W., Janovic, L., Doyle III, F.J.: Safety constraints in an artificial pancreatic-cell: an implementation of model predictive control with insulin-on-board. J. Diab. Sci. Technol. 3(3), 536–544 (2009)

    Article  Google Scholar 

  5. Farhy, L.S., Ortiz, E.A., Kovatchev, B.P., Mora, A.G., Wolf, S.E., Wade, C.E.: Range, average daily risk range as a measure of Glycemic risk is associated with mortality in the intensive care unit: a Retrospective study in a burn intensive care unit. J. Diab. Sci. Technol. 5(5), 1087–1098 (2011)

    Article  Google Scholar 

  6. Garmin. https://www.garmin.com/. Accessed 25 Mar 2015

  7. Gondhalekar, R., Dassau, E., Zisser, H.C., Doyle III, F.J.: Periodic-zone model predictive control for diurnal closed-loop operation of an artificial pancreas. J. Diab. Sci. Technol. 7(3), 1446–1460 (2013)

    Article  Google Scholar 

  8. Jawbone. https://www.jawbone.com/. Accessed 25 Mar 2015

  9. Kovatchev, B., Otto, E., Cox, D., Gonder-Frederic, L., Clarke, W.: Evaluation of new measures of glucose variability in diabetes. J. Diab. Care 29(11), 2433–2438 (2006)

    Article  Google Scholar 

  10. Ordinary Least Squares. https://en.wikipedia.org/wiki/Ordinary_least_squares. Accessed 25 Mar 2015

  11. Principle Components Regression. http://ncss.wpengine.netdna-cdn.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Principal_Components_Regression.pdf. Accessed 25 Mar 2015

  12. Rawlings, R.A., Shi, H., Yuan, L.H., Brehm, W., Pop-Busui, R., Nelson, P.W.: Translating glucose variability metrics into the clinic via continuous glucose monitoring: a graphical user interface for diabetes evaluation. J. Diab. Technol. Ther. 13(12), 1241–1248 (2011)

    Article  Google Scholar 

  13. Ridge Regression. http://ncss.wpengine.netdna-cdn.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Ridge_Regression.pdf. Accessed 25 Mar 2015

  14. Rodbard, D.: Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control. J. Diab. Technol. Ther. 11(1), S55–S67 (2009)

    Google Scholar 

  15. Service, F.J.: Glucose variability. J. Diab. 62(5), 1398–1404 (2013)

    Article  Google Scholar 

  16. Tobias, R.D., et al.: An introduction to partial least squares regression. In: 20th Proceedings of Annual SAS Users Group International Conference, Orlando, FL, pp. 2–5. Citeseer (1995)

    Google Scholar 

  17. van Heusden, K., Dassau, E., Zisser, H.C., Seborg, D.E., Doyle III, F.J.: Control-relevant models for glucose control using a priori patient characteristics. IEEE Trans. Biomed. Eng. 59(7), 1839–1849 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Krintz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Krintz, C., Wolski, R., Pinsker, J.E., Dimopoulos, S., Brevik, J., Dassau, E. (2016). On the Use of Consumer-Grade Activity Monitoring Devices to Improve Predictions of Glycemic Variability. In: Leon-Garcia, A., et al. Smart City 360°. SmartCity 360 SmartCity 360 2016 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-319-33681-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33681-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33680-0

  • Online ISBN: 978-3-319-33681-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics