Skip to main content

Fertility Preservation in the Pediatric Setting

  • Chapter
  • First Online:

Part of the book series: Pediatric Oncology ((PEDIATRICO))

Abstract

Long-term effects of cancer therapy have gained significance with advances in childhood cancer treatment and rise in survival rates. Of the myriad of late effects, infertility is among the top concerns of survivors of childhood cancer. Surveys show that a majority of survivors of pediatric cancers express the desire to have children in the future. Although many patients and their parents are focused on survival at the time of diagnosis, for majority, fertility became an issue after treatment, especially as they became adults and their peers married and began families.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schover LR et al (1999) Having children after cancer. A pilot survey of survivors’ attitudes and experiences. Cancer 86(4):697–709

    Article  CAS  PubMed  Google Scholar 

  2. Zebrack BJ et al (2004) Fertility issues for young adult survivors of childhood cancer. Psychooncology 13(10):689–699

    Article  PubMed  Google Scholar 

  3. Nieman CL et al (2006) Cancer survivors and infertility: a review of a new problem and novel answers. J Support Oncol 4(4):171–178

    PubMed  Google Scholar 

  4. Nieman CL et al (2007) Fertility preservation and adolescent cancer patients: lessons from adult survivors of childhood cancer and their parents. Cancer Treat Res 138:201–217

    Article  PubMed  PubMed Central  Google Scholar 

  5. Waimey KE et al (2013) Future directions in oncofertility and fertility preservation: a report from the 2011 oncofertility consortium conference. J Adolesc Young Adult Oncol 2(1):25–30

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dunson DB, Baird DD, Colombo B (2004) Increased infertility with age in men and women. Obstet Gynecol 103(1):51–56

    Article  PubMed  Google Scholar 

  7. Zegers-Hochschild F et al (2009) International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril 92(5):1520–1524

    Article  CAS  PubMed  Google Scholar 

  8. Chandra A, Copen CE, Stephen EH (2013) Infertility and impaired fecundity in the United States, 1982–2010: data from the National Survey of Family Growth. Natl Health Stat Rep 67:1–18, 1 p following 19

    Google Scholar 

  9. Gnoth C et al (2005) Definition and prevalence of subfertility and infertility. Hum Reprod 20(5):1144–1147

    Article  CAS  PubMed  Google Scholar 

  10. Barton SE et al (2013) Infertility, infertility treatment, and achievement of pregnancy in female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol 14(9):873–881

    Article  PubMed  Google Scholar 

  11. Green DM et al (2010) Fertility of male survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol 28(2):332–339

    Article  PubMed  Google Scholar 

  12. Wasilewski-Masker K et al (2014) Male infertility in long-term survivors of pediatric cancer: a report from the childhood cancer survivor study. J Cancer Surviv 8(3):437–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dama E et al (2009) Life after childhood cancer: marriage and offspring in adult long-term survivors – a population-based study in the Piedmont region. Italy Eur J Cancer Prev 18(6):425–430

    Article  PubMed  Google Scholar 

  14. Reinmuth S et al (2013) Impact of chemotherapy and radiotherapy in childhood on fertility in adulthood: the FeCt-survey of childhood cancer survivors in Germany. J Cancer Res Clin Oncol 139(12):2071–2078

    Article  CAS  PubMed  Google Scholar 

  15. Woodruff TK (2015) Oncofertility: a grand collaboration between reproductive medicine and oncology. Reproduction 150(3):S1–S10

    Google Scholar 

  16. Woodruff TK (2010) The oncofertility consortium – addressing fertility in young people with cancer. Nat Rev Clin Oncol 7(8):466–475

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Vos M, Smitz J, Woodruff TK (2014) Fertility preservation in women with cancer. Lancet 384(9950):1302–1310

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smitz J et al (2010) Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update 16(4):395–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomson AB et al (2002) Semen quality and spermatozoal DNA integrity in survivors of childhood cancer: a case-control study. Lancet 360(9330):361–367

    Article  CAS  PubMed  Google Scholar 

  20. Hobbie WL et al (2005) Fertility in males treated for Hodgkins disease with COPP/ABV hybrid. Pediatr Blood Cancer 44(2):193–196

    Article  PubMed  Google Scholar 

  21. van Casteren NJ et al (2009) Effect of childhood cancer treatment on fertility markers in adult male long-term survivors. Pediatr Blood Cancer 52(1):108–112

    Article  PubMed  Google Scholar 

  22. Aubier F et al (1989) Male gonadal function after chemotherapy for solid tumors in childhood. J Clin Oncol 7(3):304–309

    Article  CAS  PubMed  Google Scholar 

  23. Relander T et al (2000) Gonadal and sexual function in men treated for childhood cancer. Med Pediatr Oncol 35(1):52–63

    Article  CAS  PubMed  Google Scholar 

  24. Nurmio M et al (2009) Effect of childhood acute lymphoblastic leukemia therapy on spermatogonia populations and future fertility. J Clin Endocrinol Metab 94(6):2119–2122

    Article  CAS  PubMed  Google Scholar 

  25. Shafford EA et al (1993) Testicular function following the treatment of Hodgkin’s disease in childhood. Br J Cancer 68(6):1199–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kenney LB et al (2012) Male reproductive health after childhood, adolescent, and young adult cancers: a report from the Children’s Oncology Group. J Clin Oncol 30(27):3408–3416

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kenney LB et al (2001) High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer 91(3):613–621

    Article  CAS  PubMed  Google Scholar 

  28. Lee SJ et al (2006) American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol 24(18):2917–2931

    Article  PubMed  Google Scholar 

  29. Meistrich ML et al (1992) Impact of cyclophosphamide on long-term reduction in sperm count in men treated with combination chemotherapy for Ewing and soft tissue sarcomas. Cancer 70(11):2703–2712

    Article  CAS  PubMed  Google Scholar 

  30. Williams D, Crofton PM, Levitt G (2008) Does ifosfamide affect gonadal function? Pediatr Blood Cancer 50(2):347–351

    Article  PubMed  Google Scholar 

  31. Green DM et al (2009) Fertility of female survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol 27(16):2677–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Green DM et al (2014) The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer 61(1):53–67

    Article  CAS  PubMed  Google Scholar 

  33. Green DM et al (2014) Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study. Lancet Oncol 15(11):1215–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Green DM et al (2003) Pregnancy outcome of partners of male survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol 21(4):716–721

    Article  PubMed  Google Scholar 

  35. Leiper AD, Grant DB, Chessells JM (1986) Gonadal function after testicular radiation for acute lymphoblastic leukaemia. Arch Dis Child 61(1):53–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Speiser B, Rubin P, Casarett G (1973) Aspermia following lower truncal irradiation in Hodgkin’s disease. Cancer 32(3):692–698

    Article  CAS  PubMed  Google Scholar 

  37. Shalet SM et al (1989) Vulnerability of the human Leydig cell to radiation damage is dependent upon age. J Endocrinol 120(1):161–165

    Article  CAS  PubMed  Google Scholar 

  38. Green DM et al (2009) Ovarian failure and reproductive outcomes after childhood cancer treatment: results from the Childhood Cancer Survivor Study. J Clin Oncol 27(14):2374–2381

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chemaitilly W et al (2006) Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab 91(5):1723–1728

    Article  CAS  PubMed  Google Scholar 

  40. Sklar CA et al (2006) Premature menopause in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst 98(13):890–896

    Article  PubMed  Google Scholar 

  41. Larsen EC et al (2003) Diminished ovarian reserve in female childhood cancer survivors with regular menstrual cycles and basal FSH <10 IU/l. Hum Reprod 18(2):417–422

    Article  CAS  PubMed  Google Scholar 

  42. Chiarelli AM, Marrett LD, Darlington G (1999) Early menopause and infertility in females after treatment for childhood cancer diagnosed in 1964–1988 in Ontario, Canada. Am J Epidemiol 150(3):245–254

    Article  CAS  PubMed  Google Scholar 

  43. Thomas-Teinturier C et al (2013) Age at menopause and its influencing factors in a cohort of survivors of childhood cancer: earlier but rarely premature. Hum Reprod 28(2):488–495

    Article  PubMed  Google Scholar 

  44. Absolom K et al (2008) Ovarian failure following cancer treatment: current management and quality of life. Hum Reprod 23(11):2506–2512

    Article  PubMed  Google Scholar 

  45. Wallace WH, Thomson AB, Kelsey TW (2003) The radiosensitivity of the human oocyte. Hum Reprod 18(1):117–121

    Article  CAS  PubMed  Google Scholar 

  46. Himelstein-Braw R, Peters H, Faber M (1977) Influence of irradiation and chemotherapy on the ovaries of children with abdominal tumours. Br J Cancer 36(2):269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Critchley HO et al (1992) Abdominal irradiation in childhood; the potential for pregnancy. Br J Obstet Gynaecol 99(5):392–394

    Article  CAS  PubMed  Google Scholar 

  48. Sanders JE et al (1996) Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood 87(7):3045–3052

    CAS  PubMed  Google Scholar 

  49. Green DM et al (2002) Pregnancy outcome of female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Am J Obstet Gynecol 187(4):1070–1080

    Article  PubMed  Google Scholar 

  50. Signorello LB et al (2006) Female survivors of childhood cancer: preterm birth and low birth weight among their children. J Natl Cancer Inst 98(20):1453–1461

    Article  PubMed  PubMed Central  Google Scholar 

  51. Domingues TS, Rocha AM, Serafini PC (2010) Tests for ovarian reserve: reliability and utility. Curr Opin Obstet Gynecol 22(4):271–276

    PubMed  Google Scholar 

  52. Jahnukainen K et al (2006) Clinical potential and putative risks of fertility preservation in children utilizing gonadal tissue or germline stem cells. Pediatr Res 59(4 Pt 2):40R–47R

    Article  PubMed  Google Scholar 

  53. Hubner K et al (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300(5623):1251–1256

    Article  PubMed  CAS  Google Scholar 

  54. Johnson J et al (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122(2):303–315

    Article  CAS  PubMed  Google Scholar 

  55. Telfer EE et al (2005) On regenerating the ovary and generating controversy. Cell 122(6):821–822

    Article  CAS  PubMed  Google Scholar 

  56. Chumlea WC et al (2003) Age at menarche and racial comparisons in US girls. Pediatrics 111(1):110–113

    Article  PubMed  Google Scholar 

  57. Bath LE et al (2001) Hypothalamic-pituitary-ovarian dysfunction after prepubertal chemotherapy and cranial irradiation for acute leukaemia. Hum Reprod 16(9):1838–1844

    Article  CAS  PubMed  Google Scholar 

  58. van der Kaaij MA et al (2012) Premature ovarian failure and fertility in long-term survivors of Hodgkin’s lymphoma: a European Organisation for Research and Treatment of Cancer Lymphoma Group and Groupe d’Etude des Lymphomes de l’Adulte Cohort Study. J Clin Oncol 30(3):291–299

    Article  PubMed  Google Scholar 

  59. Giacobbe M et al (2004) The usefulness of ovarian volume, antral follicle count and age as predictors of menopausal status. Climacteric 7(3):255–260

    Article  CAS  PubMed  Google Scholar 

  60. Pavlik EJ et al (2000) Ovarian volume related to age. Gynecol Oncol 77(3):410–412

    Article  CAS  PubMed  Google Scholar 

  61. Wallace WH, Kelsey TW (2004) Ovarian reserve and reproductive age may be determined from measurement of ovarian volume by transvaginal sonography. Hum Reprod 19(7):1612–1617

    Article  PubMed  Google Scholar 

  62. Bath LE et al (2003) Depletion of ovarian reserve in young women after treatment for cancer in childhood: detection by anti-Mullerian hormone, inhibin B and ovarian ultrasound. Hum Reprod 18(11):2368–2374

    Article  CAS  PubMed  Google Scholar 

  63. Scheffer GJ et al (2003) The number of antral follicles in normal women with proven fertility is the best reflection of reproductive age. Hum Reprod 18(4):700–706

    Article  CAS  PubMed  Google Scholar 

  64. Chang MY et al (1998) Use of the antral follicle count to predict the outcome of assisted reproductive technologies. Fertil Steril 69(3):505–510

    Article  CAS  PubMed  Google Scholar 

  65. Burger HG (1996) The endocrinology of the menopause. Maturitas 23(2):129–136

    Article  CAS  PubMed  Google Scholar 

  66. Richardson SJ, Senikas V, Nelson JF (1987) Follicular depletion during the menopausal transition: evidence for accelerated loss and ultimate exhaustion. J Clin Endocrinol Metab 65(6):1231–1237

    Article  CAS  PubMed  Google Scholar 

  67. Burger HG et al (1995) The endocrinology of the menopausal transition: a cross-sectional study of a population-based sample. J Clin Endocrinol Metab 80(12):3537–3545

    CAS  PubMed  Google Scholar 

  68. Makanji Y et al (2014) Inhibin at 90: from discovery to clinical application, a historical review. Endocr Rev 35(5):747–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Crofton PM et al (2003) Is inhibin B a potential marker of gonadotoxicity in prepubertal children treated for cancer? Clin Endocrinol (Oxf) 58(3):296–301

    Article  CAS  Google Scholar 

  70. Larsen EC et al (2003) Reduced ovarian function in long-term survivors of radiation- and chemotherapy-treated childhood cancer. J Clin Endocrinol Metab 88(11):5307–5314

    Article  CAS  PubMed  Google Scholar 

  71. Knauff EA et al (2009) Anti-mullerian hormone, inhibin B, and antral follicle count in young women with ovarian failure. J Clin Endocrinol Metab 94(3):786–792

    Article  CAS  PubMed  Google Scholar 

  72. Sowers MR et al (2008) Anti-mullerian hormone and inhibin B in the definition of ovarian aging and the menopause transition. J Clin Endocrinol Metab 93(9):3478–3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. van Rooij IA et al (2005) Serum antimullerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility: a longitudinal study. Fertil Steril 83(4):979–987

    Article  PubMed  CAS  Google Scholar 

  74. Burger HG et al (2007) A review of hormonal changes during the menopausal transition: focus on findings from the Melbourne Women’s Midlife Health Project. Hum Reprod Update 13(6):559–565

    Article  CAS  PubMed  Google Scholar 

  75. Sowers M et al (2010) Anti-mullerian hormone and inhibin B variability during normal menstrual cycles. Fertil Steril 94(4):1482–1486

    Article  CAS  PubMed  Google Scholar 

  76. Weenen C et al (2004) Anti-mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod 10(2):77–83

    Article  CAS  PubMed  Google Scholar 

  77. Broekmans FJ et al (2008) Anti-mullerian hormone and ovarian dysfunction. Trends Endocrinol Metab 19(9):340–347

    Article  CAS  PubMed  Google Scholar 

  78. Gnoth C et al (2008) Relevance of anti-mullerian hormone measurement in a routine IVF program. Hum Reprod 23(6):1359–1365

    Article  CAS  PubMed  Google Scholar 

  79. Elgindy EA, El-Haieg DO, El-Sebaey A (2008) Anti-mullerian hormone: correlation of early follicular, ovulatory and midluteal levels with ovarian response and cycle outcome in intracytoplasmic sperm injection patients. Fertil Steril 89(6):1670–1676

    Article  CAS  PubMed  Google Scholar 

  80. Johnson LN et al (2014) Antimullerian hormone and antral follicle count are lower in female cancer survivors and healthy women taking hormonal contraception. Fertil Steril 102(3):774–781, e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dillon KE et al (2013) Pregnancy after cancer: results from a prospective cohort study of cancer survivors. Pediatr Blood Cancer 60(12):2001–2006

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kondapalli LA et al (2014) Quality of life in female cancer survivors: is it related to ovarian reserve? Qual Life Res 23(2):585–592

    Article  PubMed  Google Scholar 

  83. Dillon KE et al (2013) Pretreatment antimullerian hormone levels determine rate of posttherapy ovarian reserve recovery: acute changes in ovarian reserve during and after chemotherapy. Fertil Steril 99(2):477–483

    Article  CAS  PubMed  Google Scholar 

  84. McDade TW et al (2012) Quantification of anti-mullerian hormone (AMH) in dried blood spots: validation of a minimally invasive method for assessing ovarian reserve. Hum Reprod 27(8):2503–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tsepelidis S et al (2007) Stable serum levels of anti-mullerian hormone during the menstrual cycle: a prospective study in normo-ovulatory women. Hum Reprod 22(7):1837–1840

    Article  CAS  PubMed  Google Scholar 

  86. Broer SL et al (2011) Anti-mullerian hormone predicts menopause: a long-term follow-up study in normoovulatory women. J Clin Endocrinol Metab 96(8):2532–2539

    Article  CAS  PubMed  Google Scholar 

  87. Hagen CP et al (2010) Serum levels of anti-mullerian hormone as a marker of ovarian function in 926 healthy females from birth to adulthood and in 172 Turner syndrome patients. J Clin Endocrinol Metab 95(11):5003–5010

    Article  CAS  PubMed  Google Scholar 

  88. Kelsey TW et al (2011) A validated model of serum anti-mullerian hormone from conception to menopause. PLoS One 6(7):e22024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. van Beek RD et al (2007) Anti-mullerian hormone is a sensitive serum marker for gonadal function in women treated for Hodgkin’s lymphoma during childhood. J Clin Endocrinol Metab 92(10):3869–3874

    Article  PubMed  CAS  Google Scholar 

  90. Lie Fong S et al (2009) Assessment of ovarian reserve in adult childhood cancer survivors using anti-mullerian hormone. Hum Reprod 24(4):982–990

    Article  CAS  PubMed  Google Scholar 

  91. Morse H et al (2013) Acute onset of ovarian dysfunction in young females after start of cancer treatment. Pediatr Blood Cancer 60(4):676–681

    Article  PubMed  CAS  Google Scholar 

  92. Brougham MF et al (2012) Anti-mullerian hormone is a marker of gonadotoxicity in pre- and postpubertal girls treated for cancer: a prospective study. J Clin Endocrinol Metab 97(6):2059–2067

    Article  CAS  PubMed  Google Scholar 

  93. Cooper TG et al (2010) World Health Organization reference values for human semen characteristics. Hum Reprod Update 16(3):231–245

    Article  PubMed  Google Scholar 

  94. Lahteenmaki PM et al (2008) Male reproductive health after childhood cancer. Acta Paediatr 97(7):935–942

    Article  CAS  PubMed  Google Scholar 

  95. Vasan SS (2011) Semen analysis and sperm function tests: how much to test? Indian J Urol 27(1):41–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Aitken RJ (2006) Sperm function tests and fertility. Int J Androl 29(1):69–75; discussion 105–108

    Article  CAS  PubMed  Google Scholar 

  97. Dere E et al (2013) Biomarkers of chemotherapy-induced testicular damage. Fertil Steril 100(5):1192–1202

    Article  CAS  PubMed  Google Scholar 

  98. Schoor RA et al (2002) The role of testicular biopsy in the modern management of male infertility. J Urol 167(1):197–200

    Article  PubMed  Google Scholar 

  99. van Beek RD et al (2007) Inhibin B is superior to FSH as a serum marker for spermatogenesis in men treated for Hodgkin’s lymphoma with chemotherapy during childhood. Hum Reprod 22(12):3215–3222

    Article  PubMed  CAS  Google Scholar 

  100. Rendtorff R et al (2012) Low inhibin B levels alone are not a reliable marker of dysfunctional spermatogenesis in childhood cancer survivors. Andrologia 44(Suppl 1):219–225

    Article  PubMed  CAS  Google Scholar 

  101. Green DM et al (2013) Lack of specificity of plasma concentrations of inhibin B and follicle-stimulating hormone for identification of azoospermic survivors of childhood cancer: a report from the St Jude lifetime cohort study. J Clin Oncol 31(10):1324–1328

    Article  PubMed  PubMed Central  Google Scholar 

  102. Loren AW et al (2013) Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 31(19):2500–2510

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion (2013) Fertil Steril 100(5):1214–1223

    Google Scholar 

  104. Fertility preservation and reproduction in patients facing gonadotoxic therapies: a committee opinion (2013) Fertil Steril 100(5):1224–1231

    Google Scholar 

  105. Fallat ME, Hutter J (2008) Preservation of fertility in pediatric and adolescent patients with cancer. Pediatrics 121(5):e1461–e1469

    Article  PubMed  Google Scholar 

  106. Joshi S et al (2014) Clinical guide to fertility preservation in hematopoietic cell transplant recipients. Bone Marrow Transplant 49(4):477–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Williams RS, Littell RD, Mendenhall NP (1999) Laparoscopic oophoropexy and ovarian function in the treatment of Hodgkin disease. Cancer 86(10):2138–2142

    Article  CAS  PubMed  Google Scholar 

  108. Irtan S et al (2013) Ovarian transposition in prepubescent and adolescent girls with cancer. Lancet Oncol 14(13):e601–e608

    Article  PubMed  Google Scholar 

  109. Guglielmi R et al (1980) Ovarian function after pelvic lymph node irradiation in patients with Hodgkin’s disease submitted to oophoropexy during laparotomy. Eur J Gynaecol Oncol 1(2):99–107

    CAS  PubMed  Google Scholar 

  110. Terenziani M et al (2009) Oophoropexy: a relevant role in preservation of ovarian function after pelvic irradiation. Fertil Steril 91(3):935 e15–935 e16

    Article  Google Scholar 

  111. Kuohung W et al (2008) Laparoscopic oophoropexy prior to radiation for pediatric brain tumor and subsequent ovarian function. Hum Reprod 23(1):117–121

    Article  PubMed  Google Scholar 

  112. Porcu E et al (1997) Birth of a healthy female after intracytoplasmic sperm injection of cryopreserved human oocytes. Fertil Steril 68(4):724–726

    Article  CAS  PubMed  Google Scholar 

  113. Mature oocyte cryopreservation: a guideline (2013) Fertil Steril 99(1):37–43

    Google Scholar 

  114. Ovarian tissue cryopreservation: a committee opinion (2014) Fertil Steril 101(5):1237–1243

    Google Scholar 

  115. Donnez J et al (2013) Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril 99(6):1503–1513

    Article  PubMed  Google Scholar 

  116. Aubard Y et al (1999) Orthotopic and heterotopic autografts of frozen-thawed ovarian cortex in sheep. Hum Reprod 14(8):2149–2154

    Article  CAS  PubMed  Google Scholar 

  117. Donnez J et al (2004) Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364(9443):1405–1410

    Article  CAS  PubMed  Google Scholar 

  118. Meirow D et al (2005) Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med 353(3):318–321

    Article  CAS  PubMed  Google Scholar 

  119. Imbert R et al (2014) Safety and usefulness of cryopreservation of ovarian tissue to preserve fertility: a 12-year retrospective analysis. Hum Reprod 29(9):1931–1940

    Article  CAS  PubMed  Google Scholar 

  120. Silber S et al (2015) Fresh and cryopreserved ovary transplantation and resting follicle recruitment. Reprod Biomed Online 30(6):643–650

    Article  PubMed  Google Scholar 

  121. Dittrich R et al (2015) Pregnancies and live births after 20 transplantations of cryopreserved ovarian tissue in a single center. Fertil Steril 103(2):462–468

    Article  PubMed  Google Scholar 

  122. Macklon KT et al (2014) Treatment history and outcome of 24 deliveries worldwide after autotransplantation of cryopreserved ovarian tissue, including two new Danish deliveries years after autotransplantation. J Assist Reprod Genet 31(11):1557–1564

    Article  PubMed  PubMed Central  Google Scholar 

  123. Rodriguez-Wallberg KA et al (2015) Full-term newborn after repeated ovarian tissue transplants in a patient treated for Ewing sarcoma by sterilizing pelvic irradiation and chemotherapy. Acta Obstet Gynecol Scand 94(3):324–328

    Article  PubMed  PubMed Central  Google Scholar 

  124. Shaw JM et al (1996) Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum Reprod 11(8):1668–1673

    Article  CAS  PubMed  Google Scholar 

  125. Bastings L et al (2013) Autotransplantation of cryopreserved ovarian tissue in cancer survivors and the risk of reintroducing malignancy: a systematic review. Hum Reprod Update 19(5):483–506

    Article  CAS  PubMed  Google Scholar 

  126. Amiot C et al (2013) Minimal residual disease detection of leukemic cells in ovarian cortex by eight-color flow cytometry. Hum Reprod 28(8):2157–2167

    Article  CAS  PubMed  Google Scholar 

  127. Greve T et al (2013) Ovarian tissue cryopreserved for fertility preservation from patients with Ewing or other sarcomas appear to have no tumour cell contamination. Eur J Cancer 49(8):1932–1938

    Article  PubMed  Google Scholar 

  128. Dolmans MM et al (2013) Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue. Fertil Steril 99(6):1514–1522

    Article  PubMed  Google Scholar 

  129. Abir R et al (2014) Ovarian minimal residual disease in chronic myeloid leukaemia. Reprod Biomed Online 28(2):255–260

    Article  CAS  PubMed  Google Scholar 

  130. Spears N et al (1994) Mouse oocytes derived from in vitro grown primary ovarian follicles are fertile. Hum Reprod 9(3):527–532

    Article  CAS  PubMed  Google Scholar 

  131. Eppig JJ, O'Brien MJ (1996) Development in vitro of mouse oocytes from primordial follicles. Biol Reprod 54(1):197–207

    Article  CAS  PubMed  Google Scholar 

  132. Xu M et al (2006) Tissue-engineered follicles produce live, fertile offspring. Tissue Eng 12(10):2739–2746

    Google Scholar 

  133. Xiao S et al (2015) Size-specific follicle selection improves mouse oocyte reproductive outcomes. Reproduction 150(3):183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shea LD, Woodruff TK, Shikanov A (2014) Bioengineering the ovarian follicle microenvironment. Annu Rev Biomed Eng 16:29–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Laronda MM et al (2014) Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. J Assist Reprod Genet 31(8):1013–1028

    Article  PubMed  PubMed Central  Google Scholar 

  136. Xu J et al (2013) Primate follicular development and oocyte maturation in vitro. Adv Exp Med Biol 761:43–67

    Article  PubMed  PubMed Central  Google Scholar 

  137. Brito IR et al (2014) Three-dimensional systems for in vitro follicular culture: overview of alginate-based matrices. Reprod Fertil Dev 26(7):915–930

    Article  PubMed  Google Scholar 

  138. Babayev SN et al (2013) Evaluation of ovarian and testicular tissue cryopreservation in children undergoing gonadotoxic therapies. J Assist Reprod Genet 30(1):3–9

    Article  PubMed  Google Scholar 

  139. Lima M et al (2014) Ovarian tissue collection for cryopreservation in pediatric age: laparoscopic technical tips. J Pediatr Adolesc Gynecol 27(2):95–97

    Article  PubMed  Google Scholar 

  140. Poirot C et al (2002) Human ovarian tissue cryopreservation: indications and feasibility. Hum Reprod 17(6):1447–1452

    Article  PubMed  Google Scholar 

  141. Poirot CJ et al (2006) Feasibility of ovarian tissue cryopreservation for prepubertal females with cancer. Pediatr Blood Cancer 49(1):74–78

    Google Scholar 

  142. Luyckx V et al (2013) Evaluation of cryopreserved ovarian tissue from prepubertal patients after long-term xenografting and exogenous stimulation. Fertil Steril 100(5):1350–1357

    Article  CAS  PubMed  Google Scholar 

  143. Ernst E et al (2013) Case report: stimulation of puberty in a girl with chemo- and radiation therapy induced ovarian failure by transplantation of a small part of her frozen/thawed ovarian tissue. Eur J Cancer 49(4):911–914

    Article  PubMed  Google Scholar 

  144. Poirot C et al (2012) Induction of puberty by autograft of cryopreserved ovarian tissue. Lancet 379(9815):588

    Article  PubMed  Google Scholar 

  145. Demeestere I et al (2015) Live birth after autograft of ovarian tissue cryopreserved during childhood. Hum Reprod 30(9):2107–2109

    Google Scholar 

  146. Ataya K et al (1995) Luteinizing hormone-releasing hormone agonist inhibits cyclophosphamide-induced ovarian follicular depletion in rhesus monkeys. Biol Reprod 52(2):365–372

    Article  CAS  PubMed  Google Scholar 

  147. Meirow D et al (2004) The GnRH antagonist cetrorelix reduces cyclophosphamide-induced ovarian follicular destruction in mice. Hum Reprod 19(6):1294–1299

    Article  CAS  PubMed  Google Scholar 

  148. Kishk EA, Mohammed Ali MH (2013) Effect of a gonadotropin-releasing hormone analogue on cyclophosphamide-induced ovarian toxicity in adult mice. Arch Gynecol Obstet 287(5):1023–1029

    Article  CAS  PubMed  Google Scholar 

  149. Badawy A et al (2009) Gonadotropin-releasing hormone agonists for prevention of chemotherapy-induced ovarian damage: prospective randomized study. Fertil Steril 91(3):694–697

    Article  CAS  PubMed  Google Scholar 

  150. Sverrisdottir A et al (2009) Adjuvant goserelin and ovarian preservation in chemotherapy treated patients with early breast cancer: results from a randomized trial. Breast Cancer Res Treat 117(3):561–567

    Article  CAS  PubMed  Google Scholar 

  151. Gerber B et al (2011) Effect of luteinizing hormone-releasing hormone agonist on ovarian function after modern adjuvant breast cancer chemotherapy: the GBG 37 ZORO study. J Clin Oncol 29(17):2334–2341

    Article  CAS  PubMed  Google Scholar 

  152. Munster PN et al (2012) Randomized trial using gonadotropin-releasing hormone agonist triptorelin for the preservation of ovarian function during (neo)adjuvant chemotherapy for breast cancer. J Clin Oncol 30(5):533–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Demeestere I et al (2013) Gonadotropin-releasing hormone agonist for the prevention of chemotherapy-induced ovarian failure in patients with lymphoma: 1-year follow-up of a prospective randomized trial. J Clin Oncol 31(7):903–909

    Article  CAS  PubMed  Google Scholar 

  154. Elgindy EA et al (2013) Gonadatrophin suppression to prevent chemotherapy-induced ovarian damage: a randomized controlled trial. Obstet Gynecol 121(1):78–86

    Article  CAS  PubMed  Google Scholar 

  155. Ishiguro H et al (2007) Gonadal shielding to irradiation is effective in protecting testicular growth and function in long-term survivors of bone marrow transplantation during childhood or adolescence. Bone Marrow Transplant 39(8):483–490

    Article  CAS  PubMed  Google Scholar 

  156. Acosta JM et al (2002) Temporary relocation of testes to the anterior abdominal wall before radiation therapy of the pelvis or perineum. J Pediatr Surg 37(8):1232–1233

    Article  PubMed  Google Scholar 

  157. D’Angio GJ et al (1974) Protection of certain structures from high doses of irradiation. Am J Roentgenol Radium Ther Nucl Med 122(1):103–108

    Article  PubMed  Google Scholar 

  158. Guerin JF (2005) Testicular tissue cryoconservation for prepubertal boy: indications and feasibility. Gynecol Obstet Fertil 33(10):804–808

    Article  PubMed  Google Scholar 

  159. Bahadur G et al (2002) Semen quality and cryopreservation in adolescent cancer patients. Hum Reprod 17(12):3157–3161

    Article  CAS  PubMed  Google Scholar 

  160. Meseguer M et al (2006) Sperm cryopreservation in oncological patients: a 14-year follow-up study. Fertil Steril 85(3):640–645

    Article  PubMed  Google Scholar 

  161. van Casteren NJ et al (2008) Semen cryopreservation in pubertal boys before gonadotoxic treatment and the role of endocrinologic evaluation in predicting sperm yield. Fertil Steril 90(4):1119–1125

    Article  PubMed  Google Scholar 

  162. Bahadur G et al (2002) Semen production in adolescent cancer patients. Hum Reprod 17(10):2654–2656

    Article  CAS  PubMed  Google Scholar 

  163. Romerius P et al (2010) Sperm DNA integrity in men treated for childhood cancer. Clin Cancer Res 16(15):3843–3850

    Article  PubMed  Google Scholar 

  164. Valli H et al (2014) Germline stem cells: toward the regeneration of spermatogenesis. Fertil Steril 101(1):3–13

    Article  PubMed  Google Scholar 

  165. Sadri-Ardekani H et al (2014) Eliminating acute lymphoblastic leukemia cells from human testicular cell cultures: a pilot study. Fertil Steril 101(4):1072–1078, e1

    Article  PubMed  Google Scholar 

  166. Gardino SL, Sfekas A, Dranove D (2010) Anticipating ovarian tissue cryopreservation in the health-care marketplace: a willingness to pay assessment. Cancer Treat Res 156:363–370

    Article  PubMed  PubMed Central  Google Scholar 

  167. Basco D, Campo-Engelstein L, Rodriguez S (2010) Insuring against infertility: expanding state infertility mandates to include fertility preservation technology for cancer patients. J Law Med Ethics 38(4):832–839

    Article  PubMed  PubMed Central  Google Scholar 

  168. Campo-Engelstein L (2010) For the sake of consistency and fairness: why insurance companies should cover fertility preservation treatment for iatrogenic infertility. Cancer Treat Res 156:381–388

    Article  PubMed  PubMed Central  Google Scholar 

  169. Campo-Engelstein L (2010) Consistency in insurance coverage for iatrogenic conditions resulting from cancer treatment including fertility preservation. J Clin Oncol 28(8):1284–1286

    Article  PubMed  PubMed Central  Google Scholar 

  170. Kohler TS et al (2011) Results from the survey for preservation of adolescent reproduction (SPARE) study: gender disparity in delivery of fertility preservation message to adolescents with cancer. J Assist Reprod Genet 28(3):269–277

    Article  PubMed  Google Scholar 

  171. Clayman ML et al (2013) Oncofertility resources at NCI-designated comprehensive cancer centers. J Natl Compr Canc Netw 11(12):1504–1509

    Article  PubMed  PubMed Central  Google Scholar 

  172. Sheth KR et al (2012) Improved fertility preservation care for male patients with cancer after establishment of formalized oncofertility program. J Urol 187(3):979–986

    Article  PubMed  Google Scholar 

  173. Shnorhavorian M et al (2012) Creating a standardized process to offer the standard of care: continuous process improvement methodology is associated with increased rates of sperm cryopreservation among adolescent and young adult males with cancer. J Pediatr Hematol Oncol 34(8):e315–e319

    Article  PubMed  Google Scholar 

  174. Daudin M et al (2015) Sperm cryopreservation in adolescents and young adults with cancer: results of the French national sperm banking network (CECOS). Fertil Steril 103(2):478–486, e1

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa K. Woodruff PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing

About this chapter

Cite this chapter

Gosiengfiao, Y., Woodruff, T.K. (2017). Fertility Preservation in the Pediatric Setting. In: Bleyer, A., Barr, R., Ries, L., Whelan, J., Ferrari, A. (eds) Cancer in Adolescents and Young Adults. Pediatric Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-33679-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33679-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33677-0

  • Online ISBN: 978-3-319-33679-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics