Skip to main content

Uniqueness and Stability

  • Chapter
  • First Online:
Fluid and Thermodynamics

Abstract

This chapter on uniqueness and stability provides a first flavor into the subject of laminar-turbulent transition. Two different theoretical concepts are in use and both assume that the laminar-turbulent transition is a question of loss of stability of the laminar motion. With the use of the energy method one tries to find conditions for the laminar flow to be stable. Energy stability criteria operate with the construction of upper bounds of the rate of the perturbed kinetic energy K(t) of the fluid system, in order to obtain by time integration an inequality of the form \(K(t) < K(0)\mathrm {exp}\,(-t/\tau )\). Here, \(\tau > 0\) guarantees decay and \(\tau < 0\) growth rates of the perturbed energy, \(\tau = 0\) guarantees neutral stability of the perturbation flows. The difficulty of the method is that the condition \(\tau = 0\) generally provides poor, i.e., very safe estimates for stability. More successful for pinpointing the laminar-turbulent transition has been the method of linear instability analysis, in which a lowest bound, is searched for, at which the onset of deviations from the laminar flow is taking place. For plane channel flows the Rayleigh and OrrSommerfeld equations with associated boundary conditions for an ideal and viscous fluid, respectively, are derived and the associated eigenvalue problems are discussed, which leads to the stability chart, separating Reynolds number dependent stable and unstable flow regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is a large number of books treating stability as a whole subject. Among these we mention S. Chandrasekhar [2], F. Charru [3], P.G. Drazin [4], P.G. Drazin and W.H. Reid [6], C. Godreche and C. Manneville [8], C.C. Lin [12], D.D. Joseph [10, 11], S.S. Sritharan [21], H.L. Swinney and J.P. Gollub [22].

  2. 2.

    E. Foá: L’ Industria, 43, 426 (1929), Milan.

  3. 3.

    See e.g. Handbuch der Physik III/1 ‘Strömungsmechanik (I)’, p. 153 ff.

  4. 4.

    An almost periodic function is uniformly bounded and its value at any position xy is (for fixed zt) in a distant point again assumed with almost the same value, see Fig.  14.4 .

  5. 5.

    This statement has to be understood in the sense that if e.g. \(V=0\), then \(v^{\prime }\) is obviously not small in comparison to V, but it may still be small in comparison to another variable of the same dimension, e.g. U.

  6. 6.

    For a short biography of Sommerfeld, see Fig.  14.5 .

  7. 7.

    These coordinates differ from those used in Fig. 14.3 or (14.30) by the translation \(y=y^{\star }-\frac{d}{2}\), for which (14.30)\(_2\) reads

    $$\begin{aligned} U(y^{\star }) = \frac{3}{2}U_{0} \left( 4\left( \frac{y^{\star }}{d}\right) -4\left( \frac{y^{\star }}{d}\right) ^{2}\right) . \end{aligned}$$

    Thus, (14.63) is formally valid. Moreover, the prime, \(\varPsi ^{\prime }\), in (14.63) and consecutive formulae designates now \(\mathrm{{d}}\varPsi /\mathrm{{d}}y\).

  8. 8.

    Please note that Eqs. (14.60), (14.63) as well as (14.64), (14.65) possess the zero solutions \(\varPsi = 0\). This is so because of the homogeneity of the boundary value problems.

References

  1. Betchov, R., & Criminale, W. O. (1967). It Stability of Parallel Flows. New York: Academic Press.

    Google Scholar 

  2. Chandrasekhar, S. (1981). Hydrodynamic and Hydromagnetic Stability. New York: Dover. ISBN 0-486-64071-X.

    Google Scholar 

  3. Charru, F. (2011). Hydrodynamic Instabilities. Cambridge: Cambridge University Press. ISBN 1139500546.

    Book  Google Scholar 

  4. Drazin, P. G. (2002). Introduction to Hydrodynamic Stability. Cambridge: Cambridge University Press. ISBN 0-521-00965-0.

    Book  Google Scholar 

  5. Drazin, P. G., & Howard, L. N. (1966). Hydrodynamic stability of parallel flow of inviscid fluid. Adv. Appl. Mech., 9, 1–89.

    Article  Google Scholar 

  6. Drazin, P. G., & Reid, W. H. (1981). Hydrodynamic Stability. Cambridge: Cambridge University Press. ISBN 0-521-28980-7.

    Google Scholar 

  7. Gersting, J. M., & Jankowski, D. F. (1972). Numerical methods for Orr-Sommerfeld problems. Int. J. Numer. Methods Eng., 4, 195–206.

    Article  Google Scholar 

  8. Godreche, C., & Manneville, P. (1998). Hydrodynamics and Nonlinear Instabilities. Cambridge: Cambridge University Press. ISBN 0521455030.

    Book  Google Scholar 

  9. Heisenberg, W. (1924). Über stabilität und turbulenz von flüssigkeitsströmen. Annu. d. Physik., 74, 577–627.

    Article  Google Scholar 

  10. Joseph, D.D.: Stability of Fluid Motions I. In: Tracts in Natural Philosophy, vol. 27, Springer, Berlin (1976). ISBN 3-540-07514-3

    Google Scholar 

  11. Joseph, D.D. (1976), Joseph, D.D.: Stability of Fluid Motions II. In: Tracts in Natural Philosophy, vol. 28, Springer, Berlin (1976). ISBN 3-540-07516-X

    Google Scholar 

  12. Lin, C.C.: The Theory of Hydrodynamic Stability (corrected ed.). Cambridge University Press, Cambridge (1966). OCLC 952854

    Google Scholar 

  13. Lorentz, H.A.: Abhandlung über theoretische Physik I, 43.71. Leipzig (1907). Revision of a paper published by Zittingsverlag, Akad. V. Wet. Amsterdam, 6, 28 (1897)

    Google Scholar 

  14. Orr, W.M.F.: The stability or instability of steady motions of a perfect liquid and of a viscous liquid. Part I: A perfect liquid, Part II: A viscous liquid. Proc. Roy. Irish. Acad. 27, 9–38 and 69–138 (1907)

    Google Scholar 

  15. Orr, W. M. F. (1907). The stability or instability of steady motions of a liquid. Part I. Proc. Royal Irish Academy, A27, 9–68.

    Google Scholar 

  16. Orr, W. M. F. (1907). The stability or instability of steady motions of a liquid. Part II Proc. Royal Irish Academy, A27, 69–138.

    Google Scholar 

  17. Rayleigh, L.: On the stability or instability of certain fluid motions. Proc. London Math. Soc. 11, 57 (1880) and 19, 67 (1887)

    Google Scholar 

  18. Schlichting, H., Gersten, K.: Boundary Layer Theory. 8th revised and enlarged edition. pp. 799. Springer, Berlin (2000)

    Google Scholar 

  19. Sommerfeld, A.: Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeitsbewegungen. In: Proceedings of the 4th International Congress Mathematics III, pp. 116–124. Roma (1908)

    Google Scholar 

  20. Squire, H. B. (1933). On the stability of three-dimensional distribution of viscous fluid between parallel walls. Proc. Roy. Soc. London, A142, 621–628.

    Article  Google Scholar 

  21. Sritharan, S.S.: Invariant Manifold Theory for Hydrodynamic Transition. Pitman Research Notes in Mathematics Series 241, Wiley, New York (1990). ISBN 0-582-06781-2[1]

    Google Scholar 

  22. Swinney, H.L., Gollub, J.P., (eds.): Hydrodynamic Instabilities and the Transition to Turbulence (2nd ed.). Springer, Berlin (1985). ISBN 978-3-540-13319-3

    Google Scholar 

  23. Tietjens, O.: Beiträge zur Entstehung der Turbulenz. Dissertation Universität Göttingen (1922) see also ZAMM, Zeitschr. Angew. Math. Mech. 5, 200–217 (1925)

    Google Scholar 

  24. Tollmien, W.: Über die Entstehung der TurbulenzKlasse. Mitteilung, Nachr. Ges. Wiss. Göttingen , Math. Phys. Klasse Engl. Translation in NACA-TM-609 (1931)

    Google Scholar 

  25. Tollmien, W.: Ein allgemeines Kriterium der Instabilität der laminaren Geschwindigkeitsverteilungen. Nachr. Ges. Wiss. Göttingen, math. Phys. Klasse, Fachgruppe I, 1, 79–114 (1935). Engl. Translation in NACA-TM-792 (1936)

    Google Scholar 

  26. Tollmien, W.: Asymptotische Integration der Störungsdifferentialgleichungen ebener laminarer Strömungen bei hohen Reynolsschen Zahlen. ZAMM, Z. angew. Math. Mech. 25, 33–45 and 27, 70–83 (1947)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolumban Hutter .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hutter, K., Wang, Y. (2016). Uniqueness and Stability. In: Fluid and Thermodynamics. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-33636-7_14

Download citation

Publish with us

Policies and ethics