Skip to main content

Simple Two- and Three-Dimensional Flow Problems of the Navier-Stokes Equations

  • Chapter
  • First Online:
Fluid and Thermodynamics

Abstract

This chapter begins with studying steady state layer flows through cylindrical conduits (ellipse, triangle, rectangle) and use of the Prandtl membrane analogy. This study of the Navier-Stokes fluids is important in geophysical fluid dynamics and is manifest in Ekman’s theory and its extensions, where non-inertial effects chiefly influence the details of the fluid flow, evidenced in the Ekman spiral in atmospheric and oceanic boundary flows and in free geostrophic flows as their outer solutions. Extensions of the behavior exhibited by the assumption of constant (turbulent) viscosity are based on influences of depth dependence of the viscosity which influences the circulation pattern of such steady flows. Unsteady flows are analyzed for viscous flows along an oscillating wall and the growth of a viscous boundary layer as a response of an initial tangential velocity jump with time. The chapter closes with the study of an axial laminar jet and viscous flows in a converging two-dimensional channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For biographies on Hagen and Poiseulle see Figs. 7.8 und 7.7.

  2. 2.

    After Johann Peter Gustav Lejeune Dirichlet (1805–1859), see Fig.  8.2 .

  3. 3.

    For evaluation of the integrals the following formulae are used:

    $$\begin{aligned}&\int \sqrt{x^2+a^2}\mathrm {d}x \quad ={\textstyle \frac{1}{2}}x\sqrt{x^2+a^2}+{\textstyle \frac{1}{2}}a^2\ln \left( x+\sqrt{x^2+a^2}\right) ,\\&\int \left( x^2+a^2\right) ^{3/2}\mathrm {d}x={\textstyle \frac{1}{4}}x\left( x^2+a^2\right) ^{3/2}+{\textstyle \frac{3}{8}}a^2x\sqrt{x^2+a^2}+ {\textstyle \frac{3}{8}} a^4 \ln \left( x+\sqrt{x^2+a^2}\right) . \end{aligned}$$
  4. 4.

    For a biography of Proudman see Fig. 4.13.

  5. 5.

    After Siméon Denis Poisson (1781–1840), see Fig.  8.6 .

  6. 6.

    To prove the Schwarz inequality, consider two vector fields \({\varvec{a}}\) and \({\varvec{b}}\) and take

    $$\begin{aligned}&\quad \int \limits _{{\mathcal D}}\left( {\varvec{a}} + \lambda {\varvec{b}}\right) ^{2} \mathrm {d}a \geqslant 0 \nonumber \\\longrightarrow & {} \int \limits _{{\mathcal D}}{\varvec{a}}^{2}\mathrm {d}a + 2\lambda \int \limits _{{\mathcal D}}{\varvec{a}}\cdot {\varvec{b}}\,\mathrm {d}a + \lambda ^{2}\int \limits _{{\mathcal D}} {\varvec{b}}^{2} \mathrm {d}a\geqslant 0. \end{aligned}$$

    With the choice

    $$\begin{aligned} \lambda = - \frac{\displaystyle \int \limits _{{\mathcal D}}{\varvec{a}}\cdot {\varvec{b}}\,\mathrm {d}a}{\displaystyle \int \limits _{{\mathcal D}}{\varvec{b}}^{2}\mathrm {d}a }, \end{aligned}$$

    this yields

    $$\begin{aligned}&\qquad \quad \int \limits _{{\mathcal D}}{\varvec{a}}^{2} \mathrm {d}a \cdot \int \limits _{{\mathcal D}}{\varvec{b}}^{2} \mathrm {d}a - 2\left( \int \limits _{{\mathcal D}}{\varvec{a}}\cdot {\varvec{b}}\,\mathrm {d}a \right) ^{2} + \left( \int \limits _{{\mathcal D}}{\varvec{a}}\cdot {\varvec{b}}\,\mathrm {d}a \right) ^{2} \geqslant 0 \\&\longrightarrow \quad \int \limits _{{\mathcal D}} {\varvec{a}}^{2} \mathrm {d}a \cdot \int \limits _{{\mathcal D}}{\varvec{b}}^{2} \mathrm {d}a \geqslant \left( \int \limits _{{\mathcal D}}{\varvec{a}} \cdot {\varvec{b}}\,\mathrm {d}a\right) ^{2}, \text { q.e.d.} \end{aligned}$$
  7. 7.

    This example is taken from pencil notes of the late Prof. Ernst Becker (1929–1984), lent to K. Hutter by Prof. J. Unger .

  8. 8.

    For a biography of Ekman see Fig.  8.8 .

  9. 9.

    This subsection follows closely parts of a corresponding subsection in [28].

  10. 10.

    For a biography of Coriolis see Fig.  8.10 . As an addendum to the issue of the Coriolis force Amir D. Aczel’s book [1] makes an exciting weekend reading.

  11. 11.

    We write here \(\varvec{D}\) rather than \(\langle \varvec{D} \rangle \), which was used to denote the strain rate tensor of the mean velocity field. We do this for simplicity of notation.

  12. 12.

    For a biography of Friedrich Wilhelm Bessel see Fig.   8.13 .

  13. 13.

    In the \(k-\varepsilon \)-model the kinematic viscosity \(\nu \) is parameterized according to

    $$ \nu =c_{\mu }{\frac{k^{2}}{\varepsilon }} $$

    where \(c_{\mu }=0.09\) is a dimensionless constant, k is the specific turbulent kinetic energy with dimension m\(^{2}\)s\(^{-2}\) and \(\varepsilon \) the specific dissipation rate of turbulent kinetic energy with dimension m\(^{2}\)s\(^{-3}\). The model is complemented by postulating evolution equations for k and \(\varepsilon \), so that the kinematic viscosity can vary with time and position. For the presentation of the \(k-\varepsilon \) model, see Vol. 2, Chap. 15.

  14. 14.

    For a biography of Platzman see Fig.  8.16 .

  15. 15.

    To evaluate the integral I, let

    $$\begin{aligned} \iota k(y-\sigma ) - \nu \,k^{2}t = - \left\{ \sqrt{\nu t}\,k - \iota \frac{(y-\sigma )}{2\sqrt{\nu \,t}}\right\} ^{2} - \frac{(y-\sigma )^{2}}{4\nu \,t}, \end{aligned}$$

    and \(\sqrt{\nu \,t}k = z\), \(\mathrm {d}k = \mathrm {d}z/\sqrt{\nu \,t}\). Then,

    $$\begin{aligned} I= & {} \frac{\exp \left( -\displaystyle \frac{(y-\sigma )^{2}}{4 \nu t}\right) }{\sqrt{\nu \,t}}\, \int \limits _{-\infty }^{\infty } \exp \Bigg \{-\bigg (\underbrace{z - \frac{\iota (y-\sigma )}{2\sqrt{\nu \,t}}}_{\zeta }\bigg )^{2}\Bigg \}\mathrm {d}z \nonumber \\= & {} \frac{\exp \left( - \displaystyle \frac{(y-\sigma )^{2}}{4\nu \,t}\right) }{\sqrt{\nu \,t}} \underbrace{\int \limits _{-\infty }^{\infty }\exp \left( -\zeta ^{2}\right) \mathrm {d} \zeta }_{\sqrt{\pi }} = \sqrt{\pi }\frac{\exp \left( - \displaystyle \frac{(y-\sigma )^{2}}{4\nu \,t}\right) ^{2}}{\sqrt{\nu }\,t}. \end{aligned}$$
  16. 16.

    For a biography of Oliver Heaviside see Fig.   8.20 .

  17. 17.

    The solutions presented in this section were constructed by Landau in 1944 [32] and Squire in 1951 [47]. Batchelor [3] and Sherman [46] also present computational details.

  18. 18.

    Note that \(u = r^{\gamma }F(\theta )\) with constant exponent \(\gamma \) would be more general, but \(\gamma = -1\) is seen to generate from (8.153)\(_{1}\) an ordinary differential equation.

  19. 19.

    atanh is the inverse function of tanh.

References

  1. Aczel, A.D.: Pendulum. Leon Foucault and the Triumph of Science. Washington Square Press, New York (2003)

    Google Scholar 

  2. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover Publications, New York (1965)

    Google Scholar 

  3. Batchelor, K.G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  4. Berker, R.: Intégration des équations du mouvement d’un fluide visqueux incompressible. In: Flügge, S. (ed.) Ecyclopedia of Physics, vol. VIII/2, pp. 1–384. Springer, Berlin (1963)

    Google Scholar 

  5. Bonham-Carter, G., Thomas, J.H: Numerical calculation of steady wind-driven currents in Lake Ontario and the Rochester embayment. In: Proceedings of 16th Conference on Great Lakes Research, International Association Great Lakes Research, pp. 640–662 (1973)

    Google Scholar 

  6. Boussinesq, J.: Sur l’ influence des frottements dans les mouvements reguliéres des fluides. J. Math. Pure Appl. 13, 377–438 (1868)

    Google Scholar 

  7. Bowden, K.F., Fairbairn, L.A., Hughes, P.: The distribution of shearing stresses in a tidal current. Geophys. J. R. Astr. Soc. 2, 288–305 (1959)

    Article  Google Scholar 

  8. Csanady, G.T.: Mean circulation in shallow seas. J. Geophys. Res. 81, 5389–5399 (1976)

    Article  Google Scholar 

  9. Csanady, G.T.: Turbulent interface layers. J. Geophys. Res. 83, 2329–2342 (1978)

    Article  Google Scholar 

  10. Csanady, G.T.: A developing turbulent surface shear layer model. J. Geophys. Res. 84, 4944–4948 (1979)

    Article  Google Scholar 

  11. Csanady, G.T.: The evolution of a turbulent Ekman layer. J. Geophys. Res. 85, 1537–1547 (1980)

    Article  Google Scholar 

  12. Csanady, G.T.: Circulation in the Coastal Ocean, 245 pp. D. Reidel Publishing Company, Dordrecht, Netherlands (1982)

    Google Scholar 

  13. Dombroklonskiy, S.V.: Drift current in the sea with an exponentially decaying eddy viscosity coefficient. Oceanology 9, 19–25 (1969)

    Google Scholar 

  14. Drazin, P.G., Riley, N.: The Navier-Stokes equations: a classification of flows and exact solutions, pp. 1–196. Cambridge University Press (2006)

    Google Scholar 

  15. Dryden, H.L., Munaghan, F.D., Bateman, H.: Hydrodynamics. Bulletin of the National Research Council, Washington, No. 84 (1932). (Reprinted in 1956 by Dover Publications, New York)

    Google Scholar 

  16. Ekman, V.W.: On the influence of the Earth’s rotation on the ocean currents. Ark. Mat. Astr. Fys. 2(11), 1–52 (1905)

    Google Scholar 

  17. Ellison, T.H.: Atmospheric turbulence. In: Batchelor, G.K., Davies, R.M. (eds.) Surveys in Mechanics, pp. 400–430. Cambridge University Press (1956)

    Google Scholar 

  18. Fjeldstad, J.D.: Ein Beitrag zur Theorie der winderzeugten Meeresströmungen. Gerlands Beitr. Geophys. 23, 237–247 (1930)

    Google Scholar 

  19. Foristall, G.Z.: Three-dimensional structure of storm-generated currents. J. Geophys. Res. 79, 2721–2729 (1974)

    Article  Google Scholar 

  20. Foristall, G.Z.: A two-layer model for Hurricane-driven currents on an irregular grid. J. Phys. Oceanogr. 23, 237–247 (1980)

    Google Scholar 

  21. Foristall, G.Z., Hamilton, R.C., Cordane, V.J.: Continential shelf currents in tropical storm Delia: observations and theory. J. Phys. Oceanogr. 9, 1417–1438 (1938)

    Google Scholar 

  22. Gedney, R.T.: Numerical calculations of wind-driven currents in Lake Erie. Ph.D. Dissertation, Case Western Reserve University, Ckleveland, OH (1971)

    Google Scholar 

  23. Gedney, R.T., Lick, W.: Wind-driven currents in Lake Erie. J. Geophys. Res. 77, 2714–2723 (1972)

    Article  Google Scholar 

  24. Heaps, N.S.: Vertical structure of current in homogeneous and stratified waters. In: Hutter, K. (ed.) Hydrodynamics of Lakes. CISM Lectures No 286, pp. 152–207. Springer, Vienna-New York (1984)

    Google Scholar 

  25. Heaps, N.S., Jones, J.E.: Development of a three-layered spectral model for the motion of a stratified sea. II. Experiments with a rectangular basin representing the Celtic Sea. In: Johns, B. (ed.) Physical Oceanography of Coastal and Shelf Seas, pp. 401–465. Amsterdam, Elsevier (1984)

    Google Scholar 

  26. Hidaka, K.: Non-stationary ocean currents. Mem. Imp. Mar. Obs. Kobe, 5, 141–266 (1933)

    Google Scholar 

  27. Howarth, L.: Rayleigh’s problem for a semi-infinite plate. Proc. Camb. Philos. Soc. 46, 127–140 (1950)

    Article  Google Scholar 

  28. Hutter, K., Wang, Y., Chubarenko, I.: Physics of Lakes. Volume I: Foundation of the Mathematical and Physical Background, 470 pp. Springer, Berlin-Heidelberg-NewYork (2010). ISBN: 978-3-642-15177-4

    Google Scholar 

  29. Lacomb, H.: Cours d’ Oceanography Physique. Gauthier-Villars, Paris (1965)

    Google Scholar 

  30. Lagerstrom, P. A.: Laminar Flow Theory. Princeton University Press (1996) (Originally published in Moore, F.K. (ed.) Theory of Laminar Flows. Princeton University Press, Princeton, NJ (1964))

    Google Scholar 

  31. Lai, R.Y.S., Rao, D.B.: Wind drift currents in deep sea with variable eddy viscosity. Arch. Met. Geophys. Bioklim A25, 131–140 (1976)

    Article  Google Scholar 

  32. Landau, L.: A new exact solution of Navier-Stokes equations. Akademija Nauk SSSR (Moskwa) 43, 286–288 (1944)

    Google Scholar 

  33. Laska, M.: Characteristics and modelling of physical limnology processes. Mitt. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich, Nr. 54, 1–230 (1981)

    Google Scholar 

  34. Madsen, O.S.: A realistic model of the wind-induced Ekman boundary layer. J. Phys. Oceanogr. 7, 248–255 (1977)

    Article  Google Scholar 

  35. Navier, C.-L.-M.-H.: Mémoire sur les lois du movement des fluides. Mem. Acad. Sci. Inst. France 6(2), 389–440 (1827)

    Google Scholar 

  36. Newton, I.: Philosophiae Naturalis Principia Mathematica. Royal Society (1687)

    Google Scholar 

  37. Pearce, B.R., Cooper, C.K.: Numerical circulation model for wind induced flow. J. Hydraul. Div. Am. Soc. Civ. Eng. 107(HY3), 285–302 (1981)

    Google Scholar 

  38. Platzman, G.W.: The dynamic prediction of wind tides on Lake Erie. Meteorol. Monogr. Am. Meteorol. Soc. 4(26), 44 pp. (1963)

    Google Scholar 

  39. Poisson, S.-D.: Oire sur les équations générales de l’ équilibre et du mouvement des corps solides élastique et des fluides. J. Ec. Polytech. 13, cahier 20, 1–174 (1831)

    Google Scholar 

  40. Prandtl, L.: Neuere Ergebnisse der Turbulenzforschung. Zeitschrift VDI 77, 105–113 (1933)

    Google Scholar 

  41. Proudman, I.: Notes on the motion of viscous liquids in channels. Philos. Mag. 28(5), 30–36 (1914)

    Article  Google Scholar 

  42. Rayleigh, L., Strutt, J.W.: On the motion of of solid bodies through viscous liquids. Philos. Mag. 21, 697–711 (1911)

    Article  Google Scholar 

  43. Rowell, H.S., Finlayson, D.: Screw viscosity pumps. Eng. Lond. 126, 249–250, 385–387 (1928) [see also Berker [4], p. 71]

    Google Scholar 

  44. Saint-Venant, B.: Mémoire sur la dynamique des fluides. C. R. Acad. Sci. Paris 17, 1240–1242 (1843)

    Google Scholar 

  45. Schlichting, H.: Boundary Layer Theory, 7th edn. London Pergamon Press (1979). See also: Schlichting, H., Gersten, K.: Boundary Layer Theory. Springer (2000)

    Google Scholar 

  46. Sherman, F.S.: Viscous Flow. McGraw Hill Publishing Company, New York (1990)

    Google Scholar 

  47. Squire, H.B.: The round laminar Jet. Q. J. Mech. Appl. Math. 4, 321–329 (1951)

    Article  Google Scholar 

  48. Stokes, G.G.: On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Camb. Philos. Soc. 8, 287–305. [Also Math. Phys. Papers 1, 75–129 (1880)] (1845)

    Google Scholar 

  49. Stokes, G.G.: Report on recent researches on hydrodynamics. Rep. Br. Assoc. 1–20. [Also Math. Phys. Papers, 1, 156–187 (1880)] (1846)

    Google Scholar 

  50. Stokes. G.G.: On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8 (1851)

    Google Scholar 

  51. Svensson, U.: Ph.D. Thesis (1979), see in Heaps (1984)

    Google Scholar 

  52. Thomas, J.H.: A theory of steady wind-driven currents in shallow water with variable eddy viscosity. J. Phys. Oceanogr. 5, 136–142 (1975)

    Article  Google Scholar 

  53. Truesdell, C.A.: The Kinematics of Vorticity. Indiana University Press (1954)

    Google Scholar 

  54. Wang, C.Y.: Exact solutions of the Navier-Stokes equations. Appl. Mech. Rev. 42, 269–282 (1989)

    Article  Google Scholar 

  55. Wang. C.Y.: Shear flow over convection cells—an exact solution of the Navier-Stokes equations. Z. Angew. Math. Mech., 70, 351–352 (1990)

    Google Scholar 

  56. Wang. C.Y.: Exact solutions of the steady-state Navier-Stokes equations. Annu. Rev. Fluid Mech. 23, 157–177 (1991)

    Google Scholar 

  57. Welander, P.: Wind action on a shallow sea: some generalizations of Ekman’s theory. Tellus 9, 45–52 (1957)

    Article  Google Scholar 

  58. Wheeler, L.: Flow rate estimates for rectilinear pipe flow. J. Appl. Mech. 41, 903–906 (1974)

    Article  Google Scholar 

  59. Whitham, G.B.: The Navier-Stokes equations of motion. In: Rosenhead, L. (ed.) Laminar Boundary Layers, pp. 114–162. Clarendon Press, Oxford (1963)

    Google Scholar 

  60. Witten, A.J., Thomas, J.H.: Steady wind driven currents in a large lake with depth-dependent eddy viscosity. J. Phys. Oceanogr. 6, 85–92 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolumban Hutter .

Appendix 8.A: Construction of the Solution (8.22) to the Boundary Value Problem (8.8)

Appendix 8.A: Construction of the Solution (8.22) to the Boundary Value Problem (8.8)

Here, we wish to demonstrate how the solution (8.22) to the boundary value problem (8.8) is constructed for a rectangle as shown in Fig.  8.28 .

Fig. 8.28
figure 28

Construction of the laminar velocity profile through a rectangular chute

Valentin Boussinesq [6] chose a trial solution of the form

$$\begin{aligned} u(y, z) = -\frac{1}{2} \frac{p^{\prime }h^{2}}{\eta } \left\{ \frac{y}{h} - \left( \frac{y}{h}\right) ^{2} \right\} + f(y, z). \end{aligned}$$
(8.178)

The first term on the right of this equation satisfies the Poisson equation (8.8) exactly and the boundary conditions at \(y=0\) and \(y = h\). Thus, the correcting function f satisfies the Laplace equation , zero boundary conditions at \(y = 0\) and \(y = h\) and \(f(y, 0) = f(y, \ell ) = \textstyle {\frac{1}{2} \frac{p^{\prime }h^{2}}{\eta } \left( y/h - (y/h)^{2}\right) }\). So, the boundary value problem for the function f is given by

$$\begin{aligned} \begin{array}{lll} &{}\displaystyle \frac{\partial ^{2}f}{\partial y^{2}} + \frac{\partial ^{2}f}{\partial z^{2}} = 0, &{}\quad \text {in } {\mathcal D}, \\ &{}\displaystyle f = 0, &{}\quad y = 0, \quad y= h, \\ &{} \displaystyle f = \frac{1}{2}\frac{p^{\prime }h^{2}}{\eta }\left( \frac{y}{h} - \left( \frac{y}{h}\right) ^{2}\right) , &{}\quad z = 0, \quad z = \ell . \end{array} \end{aligned}$$
(8.179)

Trying with the product ansatz \(f(y, z) = f_{1}(y)\,f_{2}(z)\), the Laplace Eq. (8.179)\(_{1}\) yields

$$\begin{aligned} \frac{f_{1}^{\prime \prime }}{f_{1}} = - \frac{f_{2}^{\prime \prime }}{f_{2}} = - \lambda ^{2} \quad \Longrightarrow \quad \left\{ \begin{array}{l} f_{1}^{\prime \prime } + \lambda ^{2} f_{1} = 0, \\ f_{2}^{\prime \prime } - \lambda ^{2}f_{2} = 0. \end{array} \right. \end{aligned}$$
(8.180)

Of the trigonometric functions

$$\begin{aligned} f_{1}^{(m)} = \sin \left( \frac{m\pi }{h}y\right) ,\; \cos \left( \frac{m \pi }{h}y\right) \end{aligned}$$

the cosine function violates the boundary conditions at \(y=0\) and \(y=h\). So, the correct solution will be a combination of the sine-functions for some \(m = 1,2,3,\ldots ,\infty \). It is also obvious that \(\lambda = m\pi /h\). With this value then follows that (8.180)\(_{2}\) gives rise to the independent solution functions

$$\begin{aligned} \sinh \left( \frac{m\pi }{h}z\right) , \qquad \sinh \left( \frac{m\pi }{h}(\ell - z)\right) . \end{aligned}$$
(8.181)

These are chosen in this form, since the function f(yz) must primarily be corrected where the trial solution (8.178) does not satisfy the boundary condition.

It follows that the linear combination

$$\begin{aligned} f =\sum _{m=1}^{\infty }\sin \left( \frac{m\pi }{h}y\right) \left\{ A_{m} \sinh \left( \frac{m\pi }{h}z\right) + B_{m}\sinh \left( \frac{m\pi }{h} (\ell -z)\right) \right\} .\qquad \end{aligned}$$
(8.182)

is in principle able to match the boundary conditions (8.179)\(_{3}\); explicitly,

$$\begin{aligned} \sum _{m=1}^{\infty }\sin \left( \frac{m \pi }{h}y\right) B_{m} \sinh \left( \frac{m\pi \ell }{h}\right) = \frac{1}{2} \frac{p^{\prime }h^{2}}{\eta } \left( \frac{y}{h} - \left( \frac{y}{h}\right) ^{2}\right) , \end{aligned}$$
(8.183)

plus the same equation, in which \(B_{m}\) is replaced by \(A_{m}\). Thus, \(B_{m} = A_{m}\) and these coefficients can be determined by standard Fourier series inversion. The result is given in (8.25).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hutter, K., Wang, Y. (2016). Simple Two- and Three-Dimensional Flow Problems of the Navier-Stokes Equations. In: Fluid and Thermodynamics. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-33633-6_8

Download citation

Publish with us

Policies and ethics