Viscous Fluids

Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)


The equations of motion for viscous fluids are obtained from the mass and momentum equations by parametrization of the viscous stress tensor as an isotropic function of the strain rate tensor \({\varvec{D}}\) with scalar coefficients, which are themselves functions of the invariants of the latter (and possibly additional scalar field quantities such as e.g., the temperature and salinity). Newtonian fluid materials emerge by linearization of this parametrization in \({\varvec{D}}\). They are materially described by a shear viscosity and for compressible liquids (gases) an additional bulk viscosity. The emerging equations appear as Navier-Stokes equations. For water, experimentally supported expressions for these parameters are given in Chap.  1. The simplest nonlinear forms of the viscosity functions generate the material descriptions of dilatant and pseudoplastic liquids, which appear in rheology as power law fluids for which plane wall shear flows are studied. Applications address viscometry, hover craft and viscous Hagen-Poiseuille flows, the Reynolds-Sommerfeld slide bearing model, shallow three-dimensional free surface flows applied to the flows in large ice sheets such as Greenland and Antarctica, significant for estimations of sea level rise due to anthropogenic production of greenhouse gases.


Newtonian Navier-Stokes fluids Viscometric flows Slide bearing theory Shallow free surface flows Reiner-Riwlin fluids Dilatant, pseudoplastic fluids 


  1. 1.
    ASME-Steam Tables: Thermodynamics properties of steam. Am. Soc. Mech. Eng. New York (1940)Google Scholar
  2. 2.
    Baral, D.: Asymptotic theories of large scale motion, temperature and moisture distributions in land based polythermal ice shields and in floating ice shelves—A critical review and new developments, Ph.D. thesis, Darmstadt University of Technology, Darmstadt, Germany (1999)Google Scholar
  3. 3.
    Baral, D.R., Hutter, K., Greve, R.: Asymtotic theories of large scale motion, temperature and moisture distributions in land based polythermal ice sheets. A critical review and new developments. Appl. Mech. Rev. 54(3), 215–256 (2001)Google Scholar
  4. 4.
    Batchelor, G.K., Green, J.T.: The hydrodynamic interaction of two small freely moving spheres in a linear flow field. J. Fluid Mech. 56, 375 (1972)Google Scholar
  5. 5.
    Dorsey, N.E.: Properties of Ordinary Water Substance. Reinhold Publishing Corporation, New York (1940)Google Scholar
  6. 6.
    Einstein, A.: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 322(6), 132–148 (1905)Google Scholar
  7. 7.
    Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik. 322(8), 549–560 (1905)Google Scholar
  8. 8.
    Einstein, A.: Zur Elektrodynamik bewegter Körper. Annalen der Physik und Chemie 17, 891–921 (1905)Google Scholar
  9. 9.
    Einstein, A.: Eine neue Bestimmung der Moleküldimensionen. Annalen der Physik und Chemie, Bd. 29, 289 (1906), with correction in Bd. 34, 591 (1911)Google Scholar
  10. 10.
    Glen, J.W.: The creep of polycrystalline ice. Proc. R. Soc. Lond. A228, 519–538 (1953)Google Scholar
  11. 11.
    Hagen, G.H.L.: Ueber die Bewegung des Wassers in engen cylindrischen Röhren. Annalen der Physik 46, 423–442 (1839)Google Scholar
  12. 12.
    Hagenbach-Bischoff, J.E.: Über die Bestimmung der Zähigkeit einer Flüssigkeit durch Ausflu aus Röhren. Verhh. d. Naturforsch. Ges. in Basel 2 (1860)Google Scholar
  13. 13.
    Hager, W.H., Castro-Orgaz, O.: William Froude and the Froude number. ASCE Forum Paper. (submitted)Google Scholar
  14. 14.
    Hager, W.H.: Hydraulicians in Europe, 1800–2000. IHAR-monograph (2003)Google Scholar
  15. 15.
    Hutter, K.: Theoretical Glaciology. Reidel Dortrecht (1983)Google Scholar
  16. 16.
    Hutter, K.: Ice and snow mechanics, a challenge to theoretical and applied mechanics. In: Proceedings XVI-ICTAM Congress. Copenhagen, North Holland Publishing Company (1984)Google Scholar
  17. 17.
    Hutter, K., Jöhnk, K.: Continuum Methods of Physical Modeling. Springer, Berlin (2004)Google Scholar
  18. 18.
    Jeffrey. G.B.: The motion of elliptical particles immersed in a viscous fluid. Proc. R. Soc. Lond. 102A, 161 (1923)Google Scholar
  19. 19.
    Johnson, R.E., McMeeking, R.M.: Near surface flow in glaciers obeying Glen’s flow law. Q. J. Mech. Appl. Math. 37, 273–291 (1984)Google Scholar
  20. 20.
    Kirchner, N., Hutter, K., Jakobsson, M., Gyllencreutz, R.: Capabilities and limitations of numerical ice sheet models: a discussion for Earth scientists and modelers. Quat. Sci. Rev. 30(25–26), 3691–3704 (2011)Google Scholar
  21. 21.
    Mallock, A.: Experiments on fluid viscosity. Philos. Trans. R. Soc. Lond. 187, 41–56 (1895)Google Scholar
  22. 22.
    Newton, I.: Principia. Original title: Philosophiae Naturalis Principia (Latin, 1687). Published in English (1728)Google Scholar
  23. 23.
    Norton, F.H.: The Creep of Steel at High Temperatures. McGraw-Hill, New York (1929)Google Scholar
  24. 24.
    Piau, J.M., Bremond, M., Couette, J.M., Piau, M.: Maurice Couette, one of the founders of rheology. Rheolog. Acta 33, 357–368 (1994)Google Scholar
  25. 25.
    Poiseuille, J.L.: Recherces experimentales sur le movement des liquids dans les tubes de trés petits diamétres. Compes Rendue, 11, 961 (1840), 12 (1841)Google Scholar
  26. 26.
    Reiner, M.: Selected Papers on Rheology. Amsterdam (1975)Google Scholar
  27. 27.
    Scott Blair, G.W.: Markus Reiner 1886–1976: Obituary. J. Texture Stud. 7, 151–152 (1976)Google Scholar
  28. 28.
    Sutera, S.P.: The history of Poiseuille’s law. Annu. Rev. Fluid Mech. 25, 1–19 (1993)Google Scholar
  29. 29.
    Taylor, G.I.: The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. 138A, 41 (1932)Google Scholar
  30. 30.
    Wilshinsky, A., Chugunov, V.A.: Modeling ice mechanics by perturbation methods. J. Glaciol. 43(144), 352–358 (1997)Google Scholar
  31. 31.
    Wilshinsky, A., Chugunov, V.A.: Modeling ice flow in various glacier zones. GAMM. J. Appl. Math. Mech. 65(3), 479–493 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Versuchsanstalt für Wasserbau, Hydrologie und GlaziologieETH ZürichZürichSwitzerland
  2. 2.Department of Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations