Conservation of Angular Momentum—Vorticity

Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)


This chapter is devoted to concepts that can be deduced from mathematical statements centered around angular momentum of a classical (spin-free) fluid continuum in three-dimensional Euclidian space. Circulation is defined as the integral along a closed simple three-dimensional curve of the scalar product of a smooth velocity field with a vectorial line increment. It leads directly into Kelvin’s circulation theorem, which states that the circulation of an ideal barotropic fluid subject to conservative forces along a material curve is preserved. Its generalization in a non-inertial system to non-barotropic, viscous fluids shows how the growth rate of the circulation around a material curve is contributed among frame rotation, non-barotropicity and dissipative stress contributions. The definitions of ‘vortex lines’, ‘vortex tubes’ and ‘vortex surfaces’ then provide the occasion to prove among other things that vortex tubes in ideal fluids must either be closed within the interior of the domain of the fluid or else end at boundaries. The Helmholtz vorticity theorem, derived from the momentum equation for an ideal, density preserving barotropic fluid by straightforward mathematical transformations states that the material time rate of change of the vorticity per unit mass in three-dimensional space is given by vortex stretching and vortex tilting. This result also holds for such a fluid in a non-inertial frame and leads naturally to the Taylor-Proudman theorem that ‘steady slow flow of a density preserving fluid takes place in a plane perpendicular to the axis of rotation’. Potential vorticity theorems, originally derived by Ertel, are special conservation laws of fluid dynamics in rotating systems for a scalar quantity formed with the vorticity weighted by a flow related quantity. There are several forms of this conservation law, particularly relevant in metrology and oceanography.


Circulation Kelvin’s theorem Helmholtz’ vorticity theorem Potential vorticity theorem 


  1. 1.
    Bearman, G. (ed.): Ocean circulation. The Open University, p. 238. Butterworth-Heinemann, Oxford, Boston (1998)Google Scholar
  2. 2.
    Cosserat, E., Cosserat, F.: Théorie des corps déformables. Herrmann & Fils, Paris (1909)Google Scholar
  3. 3.
    Dietrich, G., Kalle, K., Krauss, W., Siedler, G.: General Oceanography, 2nd edn., Translated by Susanne and Hans Ulrich Roll. Wiley, New York (1980)Google Scholar
  4. 4.
    Ertel, H.: Ein neuer hydrodynamischer Erhaltungssatz. Die Naturwissenschaften. Jg. Heft 36 30 543–544 (1942)Google Scholar
  5. 5.
    Ertel, H.: Ein neuer hydrodynamischer Wirbelsatz. Meteorologische Zeitschrift, 59. Jg. Heft 9, 277–281 (1942)Google Scholar
  6. 6.
    Ertel, H.: Über hydrodynamische Wirbelsätze. Physik. Z. (Leipzig). Jg. Heft 59 526–529 (1942)Google Scholar
  7. 7.
    Ertel, H.: Über das Verhältnis des neuen hydrodynamischen Wirbelsatzes zum Zirkulationssatz von V. Bjerknes. Meteorologische Zeitschrift. Jg. Heft 12 59, 161–168 (1942)Google Scholar
  8. 8.
    Hide, R.: The magnetic analogue of Ertel’s potential vorticity theorem. Ann. Geophys. 1(1), 59–60 (1983)Google Scholar
  9. 9.
    Hutter, K., Jöhnk, K.: Continuum Methods of Physical Modeling, p. 635. Springer, Berlin (2004)Google Scholar
  10. 10.
    Hutter, K., Wang, Y., Chubarenko, I.: Physics of Lakes: Foundation of the Mathematical and Physical Background, vol. 1, p. XXViii+434. Springer, Berlin (2010)Google Scholar
  11. 11.
    Katz, J.: Relativistic potential vorticity. Proc. R. Soc. London A 391, 415–418 (1984)CrossRefGoogle Scholar
  12. 12.
    Möller, G.: Vortex-induced air entrainment rate at intakes. Mitteilung No. 220, Boes R.M. (ed.)Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich (2013)Google Scholar
  13. 13.
    Pedlosky, J.: Geophysical Fluid Dynamics. Springer, Berlin (1982)CrossRefGoogle Scholar
  14. 14.
    Schröder, W., Treder, H.-J.: Theoretical concepts and observational implications in meteorology and geophysics (Selected papers from the IAGA symposium to commemorate the 50th anniversary of Ertel’s potential vorticity). Interdivisional commission on history of the International Association of Geomagnetism and Aeronomy. ISSN: 179-5658Google Scholar
  15. 15.
    Treder, H.-J.: Zur allgemeinen relativistischen und kovarianten Integralformen der Ertelschen Wirbeltheoreme. Gerlands Beitr. Geophys. 79, 1 (1970)Google Scholar
  16. 16.
    Truesdell, C.A.: On Ertel’s vorticity theorem. Zeitschrift für Angew. Math. & Phys. (ZAMP) 2, 109–114 (1951)CrossRefGoogle Scholar
  17. 17.
    Truesdell, C.A., Noll, W.: The non-linear field theories of mechanics In: Flügge S. (ed.) Encyclopedia of Physics, vol. III/3, p. 602. Berlin (1965)Google Scholar
  18. 18.
    Truesdell, C.A. and Toupin, R.C.: The Classical Field Theories of Mechanics Flügge, S. (ed.) Bd. III/1, Springer, Berlin (1960)Google Scholar
  19. 19.
    Zatsepin, A.G., Gritsenko, V.A., Kremenetsky, V.V., Poyarkov, S.G., Stroganov, OYu.: Laboratory and numerical investigation of process of propagation of density currents along bottom slope. Oceanology 45(1), 5–15 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Versuchsanstalt für Wasserbau, Hydrologie und GlaziologieETH ZürichZürichSwitzerland
  2. 2.Department of Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations